(®) c1s Benchmarks™

CIS Google Kubernetes
Engine (GKE) Autopilot
Benchmark

v1.0.0 - 07-17-2024

Terms of Use

Please see the below link for our current terms of use:

https://www.cisecurity.org/cis-securesuite/cis-securesuite-membership-terms-of-use/

Page 1

Internal Only - General

https://www.cisecurity.org/cis-securesuite/cis-securesuite-membership-terms-of-use/

Table of Contents

=T 4 1 T L = 1
TADIE Of CONIENLSeeeerrssssnerssssssnesssssssnsssssssssnnssssssssnssssssssnnnsssssssnnnsssssssnnnnnssssssnnnes 2
(017 T - N 5
[T 1= 3 o (= 07 X B T =Y o Vo 5
REIEVANT IINKS ... e e e e e e e e e e e e e e e e eaaaaaeaaaaaaaaaaaaeaeaeeaaaaeans 5
CoNSENSUS GUIAANCE.......ciiiicciccceccceiiiiesssssssscecee s s e ressss s smems s s reeessssssmmmsssseeesssssssnmmmsssseeessssssnnnnnnns 6
Typographical CONVENTIONS.......c.cccciiiiimiiimirins s s s s s s an e s mnn s 7
Recommendation DEFINItIONSccccueeeeeeerseesssssssnmessesssssssssssssssnnnnssssssssssssssssssnnnnnnnnns 8
B 11 £ 8
ASSESSMENT STALUScooceeiiice et cner e rr s e e e e e e e s s s s mmn e e e e ee e s s s nmmm e e e r e e ennnnnsnnnnnnes 8
/YT o3 1 P 1 (- [8
1T 0 T | 8

o o] = 8
[=TT o g o1 o 8
Rationale Statement......... . e e e s n s 8
IMPact StatemMENt........ e —————————————————————— 9
X1 Lo [o Yo = L1 RS 9
Remediation Procedure.............. oo 9
DT - LU L - 1 1= 9
(=] (= =] 3 o= 9
CIS Critical Security Controls® (CIS CONtrolIS®).......cccveeerrerrerrrerrerseresersessessssessessssessessssssns 9
1o To [o7 ¢ F= 1 I T 10 F= 1§ (o o S 9
Profile Definitions..........oooooe e 10
ACKNOWIEAgEMENTS......ccc i s n e e n s n s 11
REeCOMMENAALIONScooeeeeeeeeeeeeereeeeeeeeesssssssssssssnnnnnnnesssssssssssssssnnnnnssnssssssssssssnnnnnnnnnnns 12
1 Control Plane COMPONENTS.......cccerirerrirsrrisnsrnsss s s sssssssssssssnsss s snssmssnsssssasssssasssssssnsensss 13
2 Control Plane Configurationccccceiiemnnsmnnsmnnsmnsss s s s ssssss s ssnsssssssssssnees 14
B I 0T =Y gl Yo (=S 15
L o 1o 1= Y 16
4.1 RBAC and Service ACCOUNTS.......ccciiiiiiicciririssssscccnnrresssssmmsesseessssssssesssesssssssmmsssssesssssnmsnsseessssnnnns 18
4.1.1 Ensure that the cluster-admin role is only used where required (Automated)................. 19

4.1.2 Minimize access to secrets (Automated)cooiiiiiiiiiiii i 21

4.1.3 Minimize wildcard use in Roles and ClusterRoles (Automated)ccccocveiiiinieenienne 23

4.1.4 Ensure that default service accounts are not actively used (Automated)cccceeneeee. 25

4.1.5 Ensure that Service Account Tokens are only mounted where necessary (Automated) 27

4.1.6 Avoid use of system:masters group (Automated)ccceveiiiieiieniee e 29

Page 2

Internal Only - General

4.1.7 Limit use of the Bind, Impersonate and Escalate permissions in the Kubernetes cluster

=T AT =) PR PR PP PPRPPRRTRN 31
4.1.8 Avoid bindings to system:anonymous (Automated)ccccvereeniienic i 33
4.1.9 Avoid non-default bindings to system:unauthenticated (Automated).........cccccceerveernenne. 35
4.1.10 Avoid non-default bindings to system:authenticated (Automated)...........ccccoeevierennneen. 38
4.2 Pod Security STandardscccucerrmmirmisinsinsissss s s s s s s s s 41
4.2.1 Ensure that the cluster enforces Pod Security Standard Baseline profile or stricter for all
NAMESPACES. (MANUAL)ooiiiiii e 42
4.3 Network Policies @nd CNIoiiiimiininisnscssssmsssms s s s sss s ssss s sms s sas s sss s ssmssasmssasmssasas 44
4.3.1 Ensure that all Namespaces have Network Policies defined (Automated)...................... 45
T 3RS Y=Y = G = g T= o 1= 44 oY o 47
4.4.1 Consider external secret storage (Manual)ccoeiiiiiiiiniin e 48
4.5 Extensible AdmiSSion CONIOl ..o s 50
4.5.1 Configure Image Provenance using ImagePolicyWebhook admission controller (Manual)
... 51
L B = g 1= - T oo T =T 53
4.6.1 Create administrative boundaries between resources using namespaces (Manual) 54
4.6.2 Ensure that the seccomp profile is set to RuntimeDefault in the pod definitions
AW (o 0 =1 (=T) S 56
4.6.3 Apply Security Context to Pods and Containers (Manual)...........ccccoeiieiiiiiiennnicneceeen, 58
4.6.4 The default namespace should not be used (Automated)cccceeiiieiiniiieiiiicee e, 60
5 ManNaged SEIVICESciicccrrriirsnrriissmnrrnsssms s s ssss s s sssss s e s s ssm s s e s s s s s eaa s mn s pea s am s e e e amn s e e nsnnnnnas 61
5.1 Image Registry and Image SCaNNiNg......ccccccuirrrissmsssmsssssssms s s sssmssssassssssssssassnsassssassssasssssns 62
5.1.1 Ensure Image Vulnerability Scanning is enabled (Automated).........c.cccvvecveieerceennnene. 63
5.1.2 Minimize user access to Container Image repositories (Manual)ccccocvereeerceeneenne. 66
5.1.3 Minimize cluster access to read-only for Container Image repositories (Manual) 71
5.1.4 Ensure only trusted container images are used (Automated).........ccoceeeiiiiieeniieenneenn. 75
5.2 Identity and Access Management (JAM)......ccccocurmimmrmiismrmnismssmnssss s sssssss s s sss s s ssss s snssmms snssans 78
5.2.1 Ensure GKE clusters are not running using the Compute Engine default service account
Y0 o] 4 aF= 1 L=To) OO PO PUURTRPRRTRN 79
5.3 Cloud Key Management Service (Cloud KMS)cccciiemiimninsminssmnssisssssssisss s s sssasssssns 83
5.3.1 Ensure Kubernetes Secrets are encrypted using keys managed in Cloud KMS
Y0 do] g gF= 1 L=To) PP U PP PTPPPRPRRTPN 84
5.4 Cluster NetWOrKinNgccucoruremiieniisiis s ssss s s s s s s s as e e s s s s s s e 88
5.4.1 Enable VPC Flow Logs and Intranode Visibility (Automated)ccoooeeiviiieiiniiceenneen, 89
5.4.2 Ensure Control Plane Authorized Networks is Enabled (Automated).......cccccceevcivveennnn.. 92
5.4.3 Ensure clusters are created with Private Endpoint Enabled and Public Access Disabled
AN T (] .0 =1 (=T) PRSP 95
5.4.4 Ensure clusters are created with Private Nodes (Automated)cooceeiiiiiiiiiicniniienn. 98
5.4.5 Ensure use of Google-managed SSL Certificates (Automated)cccoeveveiceriienenenn. 100
5.5 Authentication and AUthOFZatioN.........cccceeirirmrrnnr s 102
5.5.1 Manage Kubernetes RBAC users with Google Groups for GKE (Manual).................... 103
LI S (o - o = 105
5.6.1 Enable Customer-Managed Encryption Keys (CMEK) for GKE Persistent Disks (PD)
(=T g T =) PP 106
5.7 Other Cluster Configurations.........cccuucomniminninsssnnsinssss s s 108
5.7.1 Enable Security Posture (Manual)..........ccooeiiiiieiiieiiee e 109
Appendix: SUMMArY TaDI@.........eeeeeeeeeiemercieescsee s e sssssnsssssmnsssssm e s s ssn s s smnnnsnns 111
Appendix: CIS Controls v7 IG 1 Mapped Recommendations............ccccceccuvcesuennunes 115
Appendix: CIS Controls v7 IG 2 Mapped Recommendations............cccceeeervvsseennans 116
Appendix: CIS Controls v7 IG 3 Mapped Recommendations............cccccccuvvesuennue. 117
Appendix: CIS Controls v7 Unmapped Recommendations...........cccccceveeercssuensnans 119
Page 3

Internal Only - General

Appendix
Appendix
Appendix
Appendix
Appendix

Internal Only - General

: CIS Controls v8 IG 1 Mapped Recommendations...........cccceecuevvvsssnnnns 120
: CIS Controls v8 IG 2 Mapped Recommendations............ccceecueevvessennnns 121
: CIS Controls v8 IG 3 Mapped Recommendations..........cccoueeeeemsvsssnnnns 123
: CIS Controls v8 Unmapped Recommendations.............cccceeecenvrvsssnnnns 125
03 1 7= T T =30 = o] 126

Page 4

Overview

All CIS Benchmarks™ focus on technical configuration settings used to maintain and/or
increase the security of the addressed technology, and they should be used in
conjunction with other essential cyber hygiene tasks like:

e Monitoring the base operating system for vulnerabilities and quickly updating with
the latest security patches.

e Monitoring applications and libraries for vulnerabilities and quickly updating with
the latest security patches.

In the end, the CIS Benchmarks are designed as a key component of a comprehensive
cybersecurity program.

This document provides prescriptive guidance for running Google Kubernetes Engine
(GKE) AutoPilot following recommended security controls. This benchmark only
includes controls which can be modified by an end user of GKE AutoPilot.

To obtain the latest version of this guide, please visit www.cisecurity.org. If you have
questions, comments, or have identified ways to improve this guide, please write us at
support@cisecurity.org.

Intended Audience

This document is intended for cluster administrators, security specialists, auditors, and
any personnel who plan to develop, deploy, assess, or secure solutions that incorporate
Google Kubernetes Engine (GKE) AutoPilot.

Relevant links

GKE Shared Responsibility Model

GKE Control Plane Security

GKE AutoPilot Security Capabilities

GKE AutoPilot vs Standard Security Feature Comparison

Page 5

Internal Only - General

http://www.cisecurity.org/
mailto:support@cisecurity.org
https://cloud.google.com/kubernetes-engine/docs/concepts/shared-responsibility
https://cloud.google.com/kubernetes-engine/docs/concepts/control-plane-security
https://cloud.google.com/kubernetes-engine/docs/concepts/autopilot-security
https://cloud.google.com/kubernetes-engine/docs/resources/autopilot-standard-feature-comparison#security

Consensus Guidance

This CIS Benchmark™ was created using a consensus review process comprised of a
global community of subject matter experts. The process combines real world
experience with data-based information to create technology specific guidance to assist
users to secure their environments. Consensus participants provide perspective from a
diverse set of backgrounds including consulting, software development, audit and
compliance, security research, operations, government, and legal.

Each CIS Benchmark undergoes two phases of consensus review. The first phase
occurs during initial Benchmark development. During this phase, subject matter experts
convene to discuss, create, and test working drafts of the Benchmark. This discussion
occurs until consensus has been reached on Benchmark recommendations. The
second phase begins after the Benchmark has been published. During this phase, all
feedback provided by the Internet community is reviewed by the consensus team for
incorporation in the Benchmark. If you are interested in participating in the consensus
process, please visit https://workbench.cisecurity.org/.

Page 6

Internal Only - General

https://workbench.cisecurity.org/

Typographical Conventions

The following typographical conventions are used throughout this guide:

Convention Meaning

Used for blocks of code, command, and
Stylized Monospace font script examples. Text should be interpreted
exactly as presented.

Used for inline code, commands, Ul/Menu
Monospace font selections or examples. Text should be
interpreted exactly as presented.

Text set in angle brackets denote a variable

<Monospace font in brackets> . -~
requiring substitution for a real value.

Used to reference other relevant settings,
CIS Benchmarks and/or Benchmark
Communities. Also, used to denote the title
of a book, article, or other publication.

ltalic font

Additional information or caveats things like

Notes, Warnings, or Cautions (usually just
Bold font the word itself and the rest of the text
normal).
Page 7

Internal Only - General

Recommendation Definitions

The following defines the various components included in a CIS recommendation as
applicable. If any of the components are not applicable it will be noted or the
component will not be included in the recommendation.

Title

Concise description for the recommendation's intended configuration.

Assessment Status

An assessment status is included for every recommendation. The assessment status
indicates whether the given recommendation can be automated or requires manual
steps to implement. Both statuses are equally important and are determined and
supported as defined below:

Automated

Represents recommendations for which assessment of a technical control can be fully
automated and validated to a pass/fail state. Recommendations will include the
necessary information to implement automation.

Manual

Represents recommendations for which assessment of a technical control cannot be
fully automated and requires all or some manual steps to validate that the configured
state is set as expected. The expected state can vary depending on the environment.

Profile

A collection of recommendations for securing a technology or a supporting platform.
Most benchmarks include at least a Level 1 and Level 2 Profile. Level 2 extends Level 1
recommendations and is not a standalone profile. The Profile Definitions section in the
benchmark provides the definitions as they pertain to the recommendations included for
the technology.

Description

Detailed information pertaining to the setting with which the recommendation is
concerned. In some cases, the description will include the recommended value.

Rationale Statement

Detailed reasoning for the recommendation to provide the user a clear and concise
understanding on the importance of the recommendation.

Page 8

Internal Only - General

Impact Statement

Any security, functionality, or operational consequences that can result from following
the recommendation.

Audit Procedure

Systematic instructions for determining if the target system complies with the
recommendation.

Remediation Procedure

Systematic instructions for applying recommendations to the target system to bring it
into compliance according to the recommendation.

Default Value

Default value for the given setting in this recommendation, if known. If not known, either
not configured or not defined will be applied.

References

Additional documentation relative to the recommendation.

CIS Critical Security Controls® (CIS Controls®)

The mapping between a recommendation and the CIS Controls is organized by CIS
Controls version, Safeguard, and Implementation Group (IG). The Benchmark in its
entirety addresses the CIS Controls safeguards of (v7) “5.1 - Establish Secure
Configurations” and (v8) '4.1 - Establish and Maintain a Secure Configuration Process’
so individual recommendations will not be mapped to these safeguards.

Additional Information

Supplementary information that does not correspond to any other field but may be
useful to the user.

Page 9

Internal Only - General

Profile Definitions

The following configuration profiles are defined by this Benchmark:
e Leveli

Items in this profile intend to:
o Be practical and prudent
o Provide a clear security benefit

o Do not inhibit the utility of the technology beyond acceptable means
e Level 2

Extends Level 1

Page 10

Internal Only - General

Acknowledgements

This Benchmark exemplifies the great things a community of users, vendors, and
subject matter experts can accomplish through consensus collaboration. The CIS
community thanks the entire consensus team with special recognition to the following
individuals who contributed greatly to the creation of this guide:

Authors

Randall Mowen
Andrew Peabody

Key Contributors
Poonam Lamba

Shannon Kularathna
Mark Larinde

Thanks to the Google team who contributed to this benchmark

Padmalatha (Padma) Ragunathan, Vinayak Goyal, Shannon Kularathna, Michele
Chubirka, Cynthia Thomas, Glen Messenger, Greg Castle, Michael Taufen

Page 11

Internal Only - General

Recommendations

Page 12

Internal Only - General

1 Control Plane Components

Under the GKE shared responsibility model, Google GKE AutoPilot mode provides a
more managed Kubernetes experience than standard mode and implements more pre-
configured security best practices by default. It also utilizes Container-Optimized OS
reducing controls required to harden a Kubernetes cluster. You as the end user are
responsible for securing your nodes, containers, and Pods and that is what this
Benchmark specifically addresses.

Page 13

Internal Only - General

2 Control Plane Configuration

Under the GKE shared responsibility model, Google GKE AutoPilot mode provides a
more managed Kubernetes experience than standard mode and implements more pre-
configured security best practices by default. It also utilizes Container-Optimized OS
reducing controls required to harden a Kubernetes cluster. You as the end user are
responsible for securing your nodes, containers, and Pods and that is what this
Benchmark specifically addresses.

The community has reviewed the Control Plane Configuration Section and have
determined that at this time no additional security relevant configuration
recommendations are required outside of the pre-configured default configurations
supplied by Autopilot, which already follow the applicable full CIS GKE Benchmark
recommendations.

Page 14

Internal Only - General

3 Worker Nodes

Under the GKE shared responsibility model, Google GKE AutoPilot mode provides a
more managed Kubernetes experience than standard mode and implements more pre-
configured security best practices by default. It also utilizes Container-Optimized OS
reducing controls required to harden a Kubernetes cluster. You as the end user are
responsible for securing your nodes, containers, and Pods and that is what this
Benchmark specifically addresses.

The community has reviewed the Worker Node Section and have determined that at
this time additional security relevant recommendations are required outside of the pre-
configured default configurations supplied by Autopilot, which already follow the
applicable full CIS GKE Benchmark recommendations.

Page 15

Internal Only - General

4 Policies

This section contains recommendations for various Kubernetes policies which are
important to the security of the GKE AutoPilot Cluster environment.

Page 16

Internal Only - General

Page 17

Internal Only - General

4.1 RBAC and Service Accounts

Page 18

Internal Only - General

4.1.1 Ensure that the cluster-admin role is only used where
required (Automated)

Profile Applicability:
o Level 1

Description:

The RBAC role cluster-admin provides wide-ranging powers over the environment
and should be used only where and when needed.

Rationale:

Kubernetes provides a set of default roles where RBAC is used. Some of these roles
such as cluster-admin provide wide-ranging privileges which should only be applied
where absolutely necessary. Roles such as cluster-admin allow super-user access to
perform any action on any resource. When used in a ClusterRoleBinding, it gives full
control over every resource in the cluster and in all namespaces. When used in a
RoleBinding, it gives full control over every resource in the rolebinding's namespace,
including the namespace itself.

Impact:

Care should be taken before removing any clusterrolebindings from the
environment to ensure they were not required for operation of the cluster. Specifically,
modifications should not be made to clusterrolebindings with the system: prefix as
they are required for the operation of system components.

Audit:

Obtain a list of the principals who have access to the cluster-admin role by reviewing
the clusterrolebinding output for each role binding that has access to the cluster-
admin role.

kubectl get clusterrolebindings -o=custom-
columns=NAME: .metadata.name, ROLE: .roleRef.name, SUBJECT: .subjects[*] .name

Review each principal listed and ensure that cluster-admin privilege is required for it.
Remediation:

Identify all clusterrolebindings to the cluster-admin role. Check if they are used and if
they need this role or if they could use a role with fewer privileges.

Where possible, first bind users to a lower-privileged role and then remove the
clusterrolebinding to the cluster-admin role :

Page 19

Internal Only - General

|kubectl delete clusterrolebinding [name]

Default Value:

By default a single clusterrolebinding called cluster-admin is provided with the
system:masters group as its principal.

References:

1. hitps://kubernetes.io/docs/concepts/cluster-administration/

2. https://kubernetes.io/docs/reference/access-authn-authz/rbac/

CIS Controls:
Controls
- Control IG1({IG2|IG3
Version
5.4 Restrict Administrator Privileges to Dedicated
Administrator Accounts
v8 Restrict administrator privileges to dedicated administrator accounts on °
enterprise assets. Conduct general computing activities, such as internet
browsing, email, and productivity suite use, from the user’s primary, non-privileged
account.
4.3 Ensure the Use of Dedicated Administrative Accounts
v7 Ensure that all users with administrative account access use a dedicated or PY
secondary account for elevated activities. This account should only be used for
administrative activities and not internet browsing, email, or similar activities.
Page 20

Internal Only - General

https://kubernetes.io/docs/concepts/cluster-administration/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/

4.1.2 Minimize access to secrets (Automateqd)
Profile Applicability:
e Level1

Description:

The Kubernetes API stores secrets, which may be service account tokens for the
Kubernetes API or credentials used by workloads in the cluster. Access to these secrets
should be restricted to the smallest possible group of users to reduce the risk of
privilege escalation.

Rationale:

Inappropriate access to secrets stored within the Kubernetes cluster can allow for an
attacker to gain additional access to the Kubernetes cluster or external resources
whose credentials are stored as secrets.

Impact:

Care should be taken not to remove access to secrets to system components which
require this for their operation

Audit:

Review the users who have get, 1ist or watch access to secrets objects in the
Kubernetes API.

Remediation:

Where possible, remove get, 1ist and watch access to secret objects in the cluster.

Page 21

Internal Only - General

Default Value:

TYPE

Group

collector

binder

cluster—-admin

system:controller:clusterrole-aggregation-controller
aggregation-controller ServiceAccount kube-system
system:controller:expand-controller

ServiceAccount kube-system
system:controller:generic-garbage-collector

system:controller:namespace—-controller
ServiceAccount kube-system

system:controller:persistent-volume-binder

system: kube-controller-manager

CLUSTERROLEBINDING SUBJECT

SA-NAMESPACE

ServiceAccount kube-system

ServiceAccount kube-system

system:masters

clusterrole-

expand-controller
generic-garbage-
namespace-controller
persistent-volume-

system: kube-controller-

manager User
CIS Controls:
Controls
. Control IG1({IG2|IG3
Version
4.1 Establish and Maintain a Secure Configuration Process
Establish and maintain a secure configuration process for enterprise assets
v8 (end-user devices, including portable and mobile, non-computing/loT devices, and °®
servers) and software (operating systems and applications). Review and update
documentation annually, or when significant enterprise changes occur that could
impact this Safeguard.
5.2 Maintain Secure Images
Maintain secure images or templates for all systems in the enterprise based on
v7 the organization's approved configuration standards. Any new system deployment ®
or existing system that becomes compromised should be imaged using one of
those images or templates.
Page 22

Internal Only - General

4.1.3 Minimize wildcard use in Roles and ClusterRoles
(Automated)

Profile Applicability:
o Level 1

Description:

Kubernetes Roles and ClusterRoles provide access to resources based on sets of
objects and actions that can be taken on those objects. It is possible to set either of
these to be the wildcard "*", which matches all items.

Use of wildcards is not optimal from a security perspective as it may allow for
inadvertent access to be granted when new resources are added to the Kubernetes API
either as CRDs or in later versions of the product.

Rationale:

The principle of least privilege recommends that users are provided only the access
required for their role and nothing more. The use of wildcard rights grants is likely to
provide excessive rights to the Kubernetes API.

Audit:
Retrieve the roles defined across each namespaces in the cluster and review for
wildcards

|kubectl get roles --all-namespaces -0 yaml

Retrieve the cluster roles defined in the cluster and review for wildcards

kubectl get clusterroles -o yaml

Remediation:

Where possible replace any use of wildcards in clusterroles and roles with specific
objects or actions.

References:

1. hitps://kubernetes.io/docs/reference/access-authn-authz/rbac/

Page 23

Internal Only - General

https://kubernetes.io/docs/reference/access-authn-authz/rbac/

CIS Controls:

Internal Only - General

Controls
. Control IG1(IG2|IG3
Version
5.2 Use Unigue Passwords
v8 Use unique passwords for all enterprise assets. Best practice implementation PY
includes, at a minimum, an 8-character password for accounts using MFA and a
14-character password for accounts not using MFA.
4.4 Use Unique Passwords
v7 Where multi-factor authentication is not supported (such as local administrator, P
root, or service accounts), accounts will use passwords that are unique to that
system.
Page 24

4.1.4 Ensure that default service accounts are not actively used
(Automated)

Profile Applicability:
o Level 1
Description:

The default service account should not be used to ensure that rights granted to
applications can be more easily audited and reviewed.

Rationale:

Kubernetes provides a default service account which is used by cluster workloads
where no specific service account is assigned to the pod.

Where access to the Kubernetes API from a pod is required, a specific service account
should be created for that pod, and rights granted to that service account.

The default service account should be configured such that it does not provide a service
account token and does not have any explicit rights assignments.

Impact:

All workloads which require access to the Kubernetes AP will require an explicit service
account to be created.

Audit:

For each namespace in the cluster, review the rights assigned to the default service
account and ensure that it has no roles or cluster roles bound to it apart from the
defaults.

Additionally ensure that the automountServiceAccountToken: false settingisin
place for each default service account.

Remediation:

Create explicit service accounts wherever a Kubernetes workload requires specific
access to the Kubernetes APl server.
Modify the configuration of each default service account to include this value

‘automountServiceAccountToken: false

Default Value:

By default the default service account allows for its service account token to be
mounted in pods in its namespace.

Page 25

Internal Only - General

References:

1. https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-

account/
CIS Controls:
Controls
. Control IG1(IG2|IG3
Version

5.3 Disable Dormant Accounts

v8 Delete or disable any dormant accounts after a period of 45 days of inactivity, L
where supported.
4.3 Ensure the Use of Dedicated Administrative Accounts

v7 Ensure that all users with administrative account access use a dedicated or PY
secondary account for elevated activities. This account should only be used for
administrative activities and not internet browsing, email, or similar activities.
5.2 Maintain Secure Images

Maintain secure images or templates for all systems in the enterprise based on

v7 the organization's approved configuration standards. Any new system deployment ®
or existing system that becomes compromised should be imaged using one of
those images or templates.

V7 16.9 Disable Dormant Accounts °

Automatically disable dormant accounts after a set period of inactivity.
Page 26

Internal Only - General

https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/

4.1.5 Ensure that Service Account Tokens are only mounted
where necessary (Automated)

Profile Applicability:

e Level 1

Description:

Service accounts tokens should not be mounted in pods except where the workload
running in the pod explicitly needs to communicate with the API server

Rationale:

Mounting service account tokens inside pods can provide an avenue for privilege
escalation attacks where an attacker is able to compromise a single pod in the cluster.

Avoiding mounting these tokens removes this attack avenue.
Impact:

Pods mounted without service account tokens will not be able to communicate with the
API server, except where the resource is available to unauthenticated principals.

Audit:

Review pod and service account objects in the cluster and ensure that the option below
is set, unless the resource explicitly requires this access.

automountServiceAccountToken: false

Remediation:

Modify the definition of pods and service accounts which do not need to mount service
account tokens to disable it.

Default Value:
By default, all pods get a service account token mounted in them.

References:

1. https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-
account/

Page 27

Internal Only - General

https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/

CIS Controls:

Controls

. Control IG1(IG2|IG3
Version
4.8 Uninstall or Disable Unnecessary Services on
Enterprise Assets and Software
v8 Uninstall or disable unnecessary services on enterprise assets and software, L4
such as an unused file sharing service, web application module, or service
function.

14.7 Enforce Access Control to Data through Automated

V7 TOOlS ®
Use an automated tool, such as host-based Data Loss Prevention, to enforce
access controls to data even when data is copied off a system.

Page 28

Internal Only - General

4.1.6 Avoid use of system:masters group (Automateqd)
Profile Applicability:
e Level1

Description:

The special group system:masters should not be used to grant permissions to any
user or service account, except where strictly necessary (e.g. bootstrapping access
prior to RBAC being fully available)

Rationale:

The system:masters group has unrestricted access to the Kubernetes API hard-coded
into the API server source code. An authenticated user who is a member of this group
cannot have their access reduced, even if all bindings and cluster role bindings which
mention it, are removed.

When combined with client certificate authentication, use of this group can allow for
irrevocable cluster-admin level credentials to exist for a cluster.

GKE includes the CertificateSubjectRestriction admission controller which
rejects requests for the system:masters group.

CertificateSubjectRestriction "This admission controller observes creation of
CertificateSigningRequest resources that have a spec.signerName of
kubernetes.io/kube-apiserver-client. It rejects any request that specifies a 'group’ (or
'organization attribute') of system:masters." https://kubernetes.io/docs/reference/access-
authn-authz/admission-controllers/#certificatesubjectrestriction

Impact:

Once the RBAC system is operational in a cluster system:masters should not be
specifically required, as ordinary bindings from principals to the cluster-admin cluster
role can be made where unrestricted access is required.

Audit:

Review a list of all credentials which have access to the cluster and ensure that the
group system:masters is not used.

Remediation:
Remove the system:masters group from all users in the cluster.
Default Value:

By default some clusters will create a "break glass" client certificate which is a member
of this group. Access to this client certificate should be carefully controlled and it should
not be used for general cluster operations.

Page 29

Internal Only - General

https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#certificatesubjectrestriction
https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#certificatesubjectrestriction

References:

1. https://github.com/kubernetes/kubernetes/blob/master/pka/reqistry/rbac/escalatio
n check.qo#L38

CIS Controls:

Controls

. Control IG1(IG2|IG3
Version

5.4 Restrict Administrator Privileges to Dedicated

Administrator Accounts
v8 Restrict administrator privileges to dedicated administrator accounts on)
enterprise assets. Conduct general computing activities, such as internet
browsing, email, and productivity suite use, from the user’s primary, non-privileged
account.

V7 4 Controlled Use of Administrative Privileges
Controlled Use of Administrative Privileges

Page 30

Internal Only - General

https://github.com/kubernetes/kubernetes/blob/master/pkg/registry/rbac/escalation_check.go#L38
https://github.com/kubernetes/kubernetes/blob/master/pkg/registry/rbac/escalation_check.go#L38

4.1.7 Limit use of the Bind, Impersonate and Escalate
permissions in the Kubernetes cluster (Manual)

Profile Applicability:
o Level 1
Description:

Cluster roles and roles with the impersonate, bind or escalate permissions should not
be granted unless strictly required. Each of these permissions allow a particular subject
to escalate their privileges beyond those explicitly granted by cluster administrators

Rationale:

The impersonate privilege allows a subject to impersonate other users gaining their
rights to the cluster. The bind privilege allows the subject to add a binding to a cluster
role or role which escalates their effective permissions in the cluster. The escalate
privilege allows a subject to modify cluster roles to which they are bound, increasing
their rights to that level.

Each of these permissions has the potential to allow for privilege escalation to cluster-
admin level.

Impact:

There are some cases where these permissions are required for cluster service
operation, and care should be taken before removing these permissions from system
service accounts.

Audit:

Review the users who have access to cluster roles or roles which provide the
impersonate, bind or escalate privileges.

Remediation:
Where possible, remove the impersonate, bind and escalate rights from subjects.
Default Value:

In a default kubeadm cluster, the system:masters group and clusterrole-
aggregation-controller service account have access to the escalate privilege. The
system:masters group also has access to bind and impersonate.

References:

1. https://www.impidio.com/blog/kubernetes-rbac-security-pitfalls
2. https://raesene.github.io/blog/2020/12/12/Escalating Away/
3. https://raesene.github.io/blog/2021/01/16/Getting-Into-A-Bind-with-Kubernetes/

Page 31

Internal Only - General

https://www.impidio.com/blog/kubernetes-rbac-security-pitfalls
https://raesene.github.io/blog/2020/12/12/Escalating_Away/
https://raesene.github.io/blog/2021/01/16/Getting-Into-A-Bind-with-Kubernetes/

CIS Controls:

Internal Only - General

Controls
. Control IG1|IG2|IG3
Version
5.4 Restrict Administrator Privileges to Dedicated
Administrator Accounts
v8 Restrict administrator privileges to dedicated administrator accounts on Y
enterprise assets. Conduct general computing activities, such as internet
browsing, email, and productivity suite use, from the user’s primary, non-privileged
account.
v7 4 Controlled Use of Administrative Privileges
Controlled Use of Administrative Privileges
Page 32

4.1.8 Avoid bindings to system:anonymous (Automated)
Profile Applicability:

o Level 1

Description:

Avoid ClusterRoleBindings nor RoleBindings with the user system:anonymous.
Rationale:

Kubernetes assigns user system:anonymous to APl server requests that have no
authentication information provided. Binding a role to user system:anonymous gives
any unauthenticated user the permissions granted by that role and is strongly
discouraged.

Impact:

Unauthenticated users will have privileges and permissions associated with roles
associated with the configured bindings.

Care should be taken before removing any clusterrolebindings or rolebindings
from the environment to ensure they were not required for operation of the cluster. Use
a more specific and authenticated user for cluster operations.

Audit:

Both CusterRoleBindings and RoleBindings should be audited. Use the following
command to confirm there are no ClusterRoleBindings to system:anonymous:

$ kubectl get clusterrolebindings -o json | jg -r '["Name"], ["--——- "1,
(.items[] | select((.subjects | length) > 0) | select(any(.subjects[]; .name
== "gystem:anonymous")) | [.metadata.namespace, .metadata.name]) | Qtsv'

There should be no ClusterRoleBindings listed. If any bindings exist, review their
permissions with the following command and reassess their privilege.

$ kubectl get clusterrolebinding [CLUSTER ROLE BINDING NAME] -o json \
| Jg ' .roleRef.name +" " + .roleRef.kind' \
| sed -e 's/"//g' \
| xargs -1 bash -c 'kubectl get $1 $0 -o yaml'

Confirm that there are no RoleBindings including the system:anonymous user:

Page 33

Internal Only - General

$ kubectl get rolebindings -A -o json \

| jg -r '["Namespace", "Name"], ["-—-—-—----—= W, Wes==s "], (.items[] |
select ((.subjects | length) > 0) | select(any(.subjects[]; .name ==
"system:anonymous")) | [.metadata.namespace, .metadata.name]) | @tsv'

There should be no RoleBindings listed.
If any bindings exist, review their permissions with the following command and reassess
their privilege.

$ kubectl get rolebinding [ROLE BINDING NAME] --namespace
[ROLE BINDING NAMESPACE] -0 json \
| jg ' .roleRef.name +" " + .roleRef.kind' \

| sed -e 's/"//g' \
| xargs -1 bash -c 'kubectl get $1 $0 -o yaml —--namespace
[ROLE BINDING NAMESPACE]'

Remediation:

Identify all clusterrolebindings and rolebindings to the user system:anonymous.
Check if they are used and review the permissions associated with the binding using the
commands in the Audit section above or refer to GKE documentation.

Strongly consider replacing unsafe bindings with an authenticated, user-defined group.
Where possible, bind to non-default, user-defined groups with least-privilege roles.

If there are any unsafe bindings to the user system:anonymous, proceed to delete them
after consideration for cluster operations with only necessary, safer bindings.

kubectl delete clusterrolebinding
[CLUSTER ROLE BINDING NAME]
kubectl delete rolebinding

[ROLE BINDING NAME]

--namespace

[ROLE BINDING NAMESPACE]

Default Value:
No clusterrolebindings nor rolebindings with user system:anonymous.

References:

1. hitps://kubernetes.io/docs/reference/access-authn-authz/rbac/#discovery-roles

Page 34

Internal Only - General

https://cloud.google.com/kubernetes-engine/docs/best-practices/rbac#detect-prevent-default
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#discovery-roles

4.1.9 Avoid non-default bindings to system:unauthenticated
(Automated)

Profile Applicability:
o Level 1

Description:

Avoid non-default ClusterRoleBindings and RoleBindings with the group
system:unauthenticated, except the ClusterRoleBinding system:public-info-
viewer.

Rationale:

Kubernetes assigns the group system:unauthenticated to API server requests that
have no authentication information provided. Binding a role to this group gives any
unauthenticated user the permissions granted by that role and is strongly discouraged.

Impact:

Unauthenticated users will have privileges and permissions associated with roles
associated with the configured bindings.

Care should be taken before removing any non-default clusterrolebindings or
rolebindings from the environment to ensure they were not required for operation of
the cluster. Leverage a more specific and authenticated user for cluster operations.

Audit:

Both CusterRoleBindings and RoleBindings should be audited. Use the following
command to confirm there are no non-default ClusterRoleBindings to group
system:unauthenticated:

$ kubectl get clusterrolebindings -o json | jg -r '["Name"], ["-———- Y,
(.items[] | select((.subjects | length) > 0) | select(any(.subjects[]; .name
== "system:unauthenticated")) | [.metadata.namespace, .metadata.name]) |
Qtsv'

Only the following default ClusterRoleBinding should be displayed:

system:public-info-viewer

If any non-default bindings exist, review their permissions with the following command
and reassess their privilege.

Page 35

Internal Only - General

$ kubectl get clusterrolebinding [CLUSTER ROLE BINDING NAME] -o json \
| Jg ' .roleRef.name +" " + .roleRef.kind' \
| sed -e 's/"//g' \
| xargs -1 bash -c 'kubectl get $1 $0 -o yaml'

Confirm that there are no RoleBindings including the system:unauthenticated group:

$ kubectl get rolebindings -A -o json \

| Jg -r '["Namespace", "Name"], ["-—-———————- W, Vom=== "], (.items[] |
select ((.subjects | length) > 0) | select(any(.subjects[]; .name ==
"system:unauthenticated")) | [.metadata.namespace, .metadata.name]) | Qtsv'

There should be no RoleBindings listed.
If any bindings exist, review their permissions with the following command and reassess
their privilege.

$ kubectl get rolebinding [ROLE BINDING NAME] --namespace
[ROLE_BINDING NAMESPACE] -0 json \
| jg " .roleRef.name +" " + .roleRef.kind' \

| sed -e 's/"//g' \
| xargs -1 bash -c 'kubectl get $1 $0 -o yaml —--namespace
[ROLE_BINDING_NAMESPACE]'

Remediation:

Identify all non-default clusterrolebindings and rolebindings to the group
system:unauthenticated. Check if they are used and review the permissions
associated with the binding using the commands in the Audit section above or refer to
GKE documentation.

Strongly consider replacing non-default, unsafe bindings with an authenticated, user-
defined group. Where possible, bind to non-default, user-defined groups with least-
privilege roles.

If there are any non-default, unsafe bindings to the group system:unauthenticated,
proceed to delete them after consideration for cluster operations with only necessary,
safer bindings.

kubectl delete clusterrolebinding
[CLUSTER ROLE BINDING NAME]
kubectl delete rolebinding

[ROLE BINDING NAME]

namespace

[ROLE BINDING NAMESPACE]

Default Value:

ClusterRoleBindings with group system:unauthenticated:
e system:public-info-viewer

No RoleBindings with the group system:unauthenticated.

Page 36

Internal Only - General

https://cloud.google.com/kubernetes-engine/docs/best-practices/rbac#detect-prevent-default

References:

1. https://kubernetes.io/docs/reference/access-authn-authz/rbac/#discovery-roles

Page 37

Internal Only - General

https://kubernetes.io/docs/reference/access-authn-authz/rbac/#discovery-roles

4.1.10 Avoid non-default bindings to system:authenticated
(Automated)

Profile Applicability:
o Level 1

Description:

Avoid non-default ClusterRoleBindings and RoleBindings with the group
system:authenticated, except the ClusterRoleBindings system:basic-user,
system:discovery, and system:public-info-viewer.

Google's approach to authentication is to make authenticating to Google Cloud and
GKE as simple and secure as possible without adding complex configuration steps. The
group system:authenticated includes all users with a Google account, which
includes all Gmail accounts. Consider your authorization controls with this extended
group scope when granting permissions. Thus, group system:authenticated is not
recommended for non-default use.

Rationale:

GKE assigns the group system:authenticated to API server requests made by any
user who is signed in with a Google Account, including all Gmail accounts. In practice,
this isn't meaningfully different from system:unauthenticated because anyone can

create a Google Account.

Binding a role to the group system:authenticated gives any user with a Google
Account, including all Gmail accounts, the permissions granted by that role and is
strongly discouraged.

Impact:

Authenticated users in group system:authenticated should be treated similarly to
users in system:unauthenticated, having privileges and permissions associated with
roles associated with the configured bindings.

Care should be taken before removing any non-default clusterrolebindings or
rolebindings from the environment to ensure they were not required for operation of
the cluster. Leverage a more specific and authenticated user for cluster operations.

Audit:

Use the following command to confirm there are no non-default ClusterRoleBindings
to system:authenticated:

Page 38

Internal Only - General

$ kubectl get clusterrolebindings -o json | jg -r '["Name"], ["---—- 77,
(.items[] | select((.subjects | length) > 0) | select(any(.subjects[]; .name
== "system:unauthenticated")) | [.metadata.namespace, .metadata.name]) |
Qtsv'

Only the following default ClusterRoleBindings should be displayed:

system:basic-user
system:discovery
system:public-info-viewer

If any non-default bindings exist, review their permissions with the following command
and reassess their privilege.

$ kubectl get clusterrolebinding CLUSTER ROLE BINDING NAME -o json \
| Jg ' .roleRef.name +" " + .roleRef.kind' \
| sed -e 's/"//g' \
| xargs -1 bash -c 'kubectl get $1 $0 -o yaml'

Confirm that there are no RoleBindings including the system:authenticated group:

$ kubectl get rolebindings -A -o json \

| Jg -r '["Namespace", "Name"], ["-—-———————- W Wes=== "], (.items([] |
select ((.subjects | length) > 0) | select(any(.subjects[]; .name ==
"system:unauthenticated")) | [.metadata.namespace, .metadata.name]) | @tsv'

There should be no RoleBindings listed.
If any bindings exist, review their permissions with the following command and reassess
their privilege.

$ kubectl get rolebinding [ROLE BINDING NAME] --namespace
[ROLE BINDING NAMESPACE] -o json \
| jg ' .roleRef.name +" " + .roleRef.kind' \

| sed -e 's/"//g' \
| xargs -1 bash -c 'kubectl get $1 $0 -o yaml --namespace
[ROLE BINDING NAMESPACE]'

Remediation:

Identify all non-default clusterrolebindings and rolebindings to the group
system:authenticated. Check if they are used and review the permissions associated
with the binding using the commands in the Audit section above or refer to GKE
documentation.

Strongly consider replacing non-default, unsafe bindings with an authenticated, user-
defined group. Where possible, bind to non-default, user-defined groups with least-
privilege roles.

If there are any non-default, unsafe bindings to the group system:authenticated,
proceed to delete them after consideration for cluster operations with only necessary,
safer bindings.

Page 39

Internal Only - General

kubectl delete clusterrolebinding
[CLUSTER ROLE BINDING NAME]
kubectl delete rolebinding
[ROLE_BINDING NAME]

—-—namespace

[ROLE BINDING NAMESPACE]

Default Value:
ClusterRoleBindings with group system:authenticated:

e system:basic-user
e system:discovery

No RoleBindings with the group system:authenticated.

References:

1. hitps://kubernetes.io/docs/reference/access-authn-authz/rbac/#discovery-roles

Page 40

Internal Only - General

https://kubernetes.io/docs/reference/access-authn-authz/rbac/#discovery-roles

4.2 Pod Security Standards

Page 41

Internal Only - General

4.2.1 Ensure that the cluster enforces Pod Security Standard
Baseline profile or stricter for all namespaces. (Manual)
Profile Applicability:

e Level 1

Description:

The Pod Security Standard Baseline profile defines a baseline for container security.
You can enforce this by using the built-in Pod Security Admission controller.

Rationale:

Without an active mechanism to enforce the Pod Security Standard Baseline profile, it is
not possible to limit the use of containers with access to underlying cluster nodes, via
mechanisms like privileged containers, or the use of hostPath volume mounts.

Audit:

Run the following command to list the namespaces that don't have the the baseline
policy enforced.

diff \
<(kubectl get namespace -1 pod-security.kubernetes.io/enforce=baseline -o
jsonpath="'{range .items[*]}{.metadata.name}{"\n"}"') \

< (kubectl get namespace -o jsonpath='{range
.items[*]}{.metadata.name}{"\n"}")

Remediation:

Ensure that Pod Security Admission is in place for every namespace which contains
user workloads.

Run the following command to enforce the Baseline profile in a namespace:
kubectl label namespace <namespace-name> pod-
security.kubernetes.io/enforce=baseline

Default Value:
By default, Pod Security Admission is enabled but no policies are in place.

References:

1. https://kubernetes.io/docs/concepts/security/pod-security-admission

2. https://kubernetes.io/docs/concepts/security/pod-security-standards

3. https://cloud.google.com/kubernetes-engine/docs/concepts/about-security-
posture-dashboard

Page 42

Internal Only - General

https://kubernetes.io/docs/concepts/security/pod-security-admission
https://kubernetes.io/docs/concepts/security/pod-security-standards
https://cloud.google.com/kubernetes-engine/docs/concepts/about-security-posture-dashboard
https://cloud.google.com/kubernetes-engine/docs/concepts/about-security-posture-dashboard

CIS Controls:

Controls
Version

Control

IG 1

IG2|IG3

v8

16.7 Use Standard Hardening Configuration Templates for

Application Infrastructure

Use standard, industry-recommended hardening configuration templates for
application infrastructure components. This includes underlying servers, databases,
and web servers, and applies to cloud containers, Platform as a Service (PaaS)
components, and SaaS components. Do not allow in-house developed software to
weaken configuration hardening.

v7

5.1 Establish Secure Configurations
Maintain documented, standard security configuration standards for all
authorized operating systems and software.

v7

5.2 Maintain Secure Images

Maintain secure images or templates for all systems in the enterprise based on
the organization's approved configuration standards. Any new system deployment
or existing system that becomes compromised should be imaged using one of
those images or templates.

Internal Only - General

Page 43

4.3 Network Policies and CNI

Page 44

Internal Only - General

4.3.1 Ensure that all Namespaces have Network Policies defined
(Automated)

Profile Applicability:

o Level 2

Description:

Use network policies to isolate traffic in the cluster network.
Rationale:

Running different applications on the same Kubernetes cluster creates a risk of one
compromised application attacking a neighboring application. Network segmentation is
important to ensure that containers can communicate only with those they are supposed
to. A network policy is a specification of how selections of pods are allowed to
communicate with each other and other network endpoints.

Network Policies are namespace scoped. When a network policy is introduced to a
given namespace, all traffic not allowed by the policy is denied. However, if there are no
network policies in a namespace all traffic will be allowed into and out of the pods in that
namespace.

Impact:

Once network policies are in use within a given namespace, traffic not explicitly allowed
by a network policy will be denied. As such it is important to ensure that, when
introducing network policies, legitimate traffic is not blocked.

Audit:

Run the below command and review the NetworkPolicy objects created in the cluster.

kubectl get networkpolicy --all-namespaces

ensure that each namespace defined in the cluster has at least one Network
Policy.

Remediation:

Follow the documentation and create NetworkPolicy objects as needed.
See: https://cloud.google.com/kubernetes-engine/docs/how-to/network-
policy#creating a network policy for more information.

Default Value:

By default, network policies are not created.

Page 45

Internal Only - General

https://cloud.google.com/kubernetes-engine/docs/how-to/network-policy#creating_a_network_policy
https://cloud.google.com/kubernetes-engine/docs/how-to/network-policy#creating_a_network_policy

References:

1. https://cloud.google.com/kubernetes-engine/docs/how-to/network-

policy#creating a network policy

https://kubernetes.io/docs/concepis/overview/working-with-objects/namespaces/

2.
3. https://cloud.google.com/kubernetes-engine/docs/concepts/network-overview

CIS Controls:
Controls
. Control IG1(IG2|IG3
Version
13.4 Perform Traffic Filtering Between Network
% Segments J
Perform traffic filtering between network segments, where appropriate.
14.1 Segment the Network Based on Sensitivity
v7 Segment the network based on the label or classification level of the P
information stored on the servers, locate all sensitive information on separated
Virtual Local Area Networks (VLANS).
14.2 Enable Firewall Filtering Between VLANs
v7 Enable firewall filtering between VLANs to ensure that only authorized PY
systems are able to communicate with other systems necessary to fulfill their
specific responsibilities.
Page 46

Internal Only - General

https://cloud.google.com/kubernetes-engine/docs/how-to/network-policy#creating_a_network_policy
https://cloud.google.com/kubernetes-engine/docs/how-to/network-policy#creating_a_network_policy
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://cloud.google.com/kubernetes-engine/docs/concepts/network-overview

4.4 Secrets Management

Page 47

Internal Only - General

4.4.1 Consider external secret storage (Manual)
Profile Applicability:

e Level 2

Description:

Consider the use of an external secrets storage and management system instead of
using Kubernetes Secrets directly, if more complex secret management is required.
Ensure the solution requires authentication to access secrets, has auditing of access to
and use of secrets, and encrypts secrets. Some solutions also make it easier to rotate
secrets.

Rationale:

Kubernetes supports secrets as first-class objects, but care needs to be taken to ensure
that access to secrets is carefully limited. Using an external secrets provider can ease
the management of access to secrets, especially where secrests are used across both
Kubernetes and non-Kubernetes environments.

Impact:

None

Audit:

Review your secrets management implementation.
Remediation:

Refer to the secrets management options offered by the cloud service provider or a
third-party secrets management solution.

Default Value:
By default, no external secret management is configured.

References:

1. https://kubernetes.io/docs/concepts/confiquration/secret/
2. https://cloud.google.com/secret-manager/docs/overview

Page 48

Internal Only - General

https://kubernetes.io/docs/concepts/configuration/secret/
https://cloud.google.com/secret-manager/docs/overview

CIS Controls:

Controls

Version Control IG1(IG2|IG3

3 Data Protection
v8 Develop processes and technical controls to identify, classify, securely
handle, retain, and dispose of data.

v7 13 Data Protection
Data Protection

Page 49

Internal Only - General

4.5 Extensible Admission Control

Page 50

Internal Only - General

4.5.1 Configure Image Provenance using ImagePolicyWebhook
admission controller (Manual)

Profile Applicability:

o Level 2

Description:

Configure Image Provenance for the deployment.

Rationale:

Kubernetes supports plugging in provenance rules to accept or reject the images in
deployments. Rules can be configured to ensure that only approved images are
deployed in the cluster.

Impact:

Regular maintenance for the provenance configuration should be carried out, based on
container image updates.

Audit:

Review the pod definitions in the cluster and verify that image provenance is configured
as appropriate.

Remediation:

Follow the Kubernetes documentation and setup image provenance.
Default Value:

By default, image provenance is not set.

References:

1. https://kubernetes.io/docs/concepts/containers/images/
2. https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/

Page 51

Internal Only - General

https://kubernetes.io/docs/concepts/containers/images/
https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/

CIS Controls:

Controls
Version

Control

IG 1

IG2|IG3

v8

4.6 Securely Manage Enterprise Assets and Software

Securely manage enterprise assets and software. Example implementations
include managing configuration through version-controlled-infrastructure-as-code
and accessing administrative interfaces over secure network protocols, such as
Secure Shell (SSH) and Hypertext Transfer Protocol Secure (HTTPS). Do not use
insecure management protocols, such as Telnet (Teletype Network) and HTTP,
unless operationally essential.

v7

18 Application Software Security
Application Software Security

Internal Only - General

Page 52

4.6 General Policies

These policies relate to general cluster management topics, like namespace best
practices and policies applied to pod objects in the cluster.

Page 53

Internal Only - General

4.6.1 Create administrative boundaries between resources using
namespaces (Manual)

Profile Applicability:

o Level 1

Description:

Use namespaces to isolate your Kubernetes objects.

Rationale:

Limiting the scope of user permissions can reduce the impact of mistakes or malicious
activities. A Kubernetes namespace allows you to partition created resources into
logically named groups. Resources created in one namespace can be hidden from
other namespaces. By default, each resource created by a user in Kubernetes cluster
runs in a default namespace, called default. You can create additional namespaces
and attach resources and users to them. You can use Kubernetes Authorization plugins
to create policies that segregate access to namespace resources between different
users.

Impact:
You need to switch between namespaces for administration.
Audit:

Run the below command and review the namespaces created in the cluster.

kubectl get namespaces

Ensure that these namespaces are the ones you need and are adequately administered
as per your requirements.

Remediation:

Follow the documentation and create namespaces for objects in your deployment as
you need them.

Default Value:

By default, Kubernetes starts with two initial namespaces:

default - The default namespace for objects with no other namespace
kube-system - The namespace for objects created by the Kubernetes system
kube-node-lease - Namespace used for node heartbeats

kube-public - Namespace used for public information in a cluster

swp =~

Page 54

Internal Only - General

References:

1. https://kubernetes.io/docs/concepts/overview/working-with-

objects/namespaces/#viewing-namespaces

2. http://blog.kubernetes.io/2016/08/security-best-practices-kubernetes-

deployment.html

3. https://github.com/kubernetes/enhancements/tree/master/keps/sig-node/589-

efficient-node-heartbeats

CIS Controls:

Controls
Version

Control

IG 1

IG2|IG3

13 Network Monitoring and Defense

Operate processes and tooling to establish and maintain comprehensive

Boundary Defense

v8 network monitoring and defense against security threats across the enterprise’s
network infrastructure and user base.
v7 12 Boundary Defense

Internal Only - General

Page 55

https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/#viewing-namespaces
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/#viewing-namespaces
http://blog.kubernetes.io/2016/08/security-best-practices-kubernetes-deployment.html
http://blog.kubernetes.io/2016/08/security-best-practices-kubernetes-deployment.html
https://github.com/kubernetes/enhancements/tree/master/keps/sig-node/589-efficient-node-heartbeats
https://github.com/kubernetes/enhancements/tree/master/keps/sig-node/589-efficient-node-heartbeats

4.6.2 Ensure that the seccomp profile is set to RuntimeDefault in
the pod definitions (Automateq)

Profile Applicability:

o Level 2

Description:

Enable RuntimeDefault seccomp profile in the pod definitions.

Rationale:

Seccomp (secure computing mode) is used to restrict the set of system calls
applications can make, allowing cluster administrators greater control over the security
of workloads running in the cluster. Kubernetes disables seccomp profiles by default for
historical reasons. It should be enabled to ensure that the workloads have restricted
actions available within the container.

Impact:

If the RuntimeDefault seccomp profile is too restrictive for you, you would have to
create/manage your own Localhost seccomp profiles.

Audit:

Review the pod definitions output for all namespaces in the cluster with the command
below.

kubectl get pods --all-namespaces -o json | jg -r '.items[] |

select (.metadata.annotations."seccomp.security.alpha.kubernetes.io/pod" ==
"runtime/default" or .spec.securityContext.seccompProfile.type ==

"RuntimeDefault") | {namespace: .metadata.namespace, name: .metadata.name,
seccompProfile: .spec.securityContext.seccompProfile.type}'
Remediation:

Use security context to enable the RuntimeDefault seccomp profile in your pod
definitions. An example is as below:

{
"namespace": "kube-system",
"name": "metrics-server-v0.7.0-dbcc8ddf6-gz7d4",
"seccompProfile": "RuntimeDefault"

}

Default Value:

By default, seccomp profile is set to unconfined which means that no seccomp profiles
are enabled.

Page 56

Internal Only - General

References:

1. https://kubernetes.io/docs/tutorials/security/seccomp/

2. https://cloud.google.com/kubernetes-engine/docs/concepts/seccomp-in-gke

CIS Controls:

Controls
Version

Control

IG 1

IG2(IG3

v8

16.7 Use Standard Hardening Configuration Templates for

Application Infrastructure
Use standard, industry-recommended hardening configuration templates for

application infrastructure components. This includes underlying servers, databases,

and web servers, and applies to cloud containers, Platform as a Service (PaaS)
components, and SaaS components. Do not allow in-house developed software to
weaken configuration hardening.

v7

5.2 Maintain Secure Images

Maintain secure images or templates for all systems in the enterprise based on
the organization's approved configuration standards. Any new system deployment
or existing system that becomes compromised should be imaged using one of
those images or templates.

Internal Only - General

Page 57

https://kubernetes.io/docs/tutorials/security/seccomp/
https://cloud.google.com/kubernetes-engine/docs/concepts/seccomp-in-gke

4.6.3 Apply Security Context to Pods and Containers (Manual)
Profile Applicability:

e Level 2

Description:

Apply Security Context to Pods and Containers

Rationale:

A security context defines the operating system security settings (uid, gid, capabilities,
SELinux role, etc..) applied to a container. When designing containers and pods, make
sure that the security context is configured for pods, containers, and volumes. A security
context is a property defined in the deployment yaml. It controls the security parameters
that will be assigned to the pod/container/volume. There are two levels of security
context: pod level security context, and container level security context.

Impact:
If you incorrectly apply security contexts, there may be issues running the pods.
Audit:

Review the pod definitions in the cluster and verify that the security contexts have been
defined as appropriate.

Remediation:

Follow the Kubernetes documentation and apply security contexts to your pods. For a
suggested list of security contexts, you may refer to the CIS Google Container-
Optimized OS Benchmark.

Default Value:
By default, no security contexts are automatically applied to pods.

References:

https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/containers/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://learn.cisecurity.org/benchmarks

el e

Page 58

Internal Only - General

https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/containers/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://learn.cisecurity.org/benchmarks

CIS Controls:

Controls

Version Control IG1(IG2|IG3

4 Secure Configuration of Enterprise Assets and Software
v8 Establish and maintain the secure configuration of enterprise assets (end-user
devices, including portable and mobile; network devices; non-computing/loT
devices; and servers) and software (operating systems and applications).

5.1 Establish Secure Configurations
v7 Maintain documented, standard security configuration standards for all]
authorized operating systems and software.

Page 59

Internal Only - General

4.6.4 The default namespace should not be used (Automated)
Profile Applicability:
e Level 2

Description:

Kubernetes provides a default namespace, where objects are placed if no namespace
is specified for them. Placing objects in this namespace makes application of RBAC and
other controls more difficult.

Rationale:

Resources in a Kubernetes cluster should be segregated by namespace, to allow for
security controls to be applied at that level and to make it easier to manage resources.

Impact:
None
Audit:

Run this command to list objects in default namespace

kubectl get $ (kubectl api-resources --verbs=list --namespaced=true -o name |
paste -sd, -) --ignore-not-found -n default

The only entries there should be system managed resources such as the kubernetes

service
OR

kubectl get pods -n default

Returning No resources found in default namespace.
Remediation:

Ensure that namespaces are created to allow for appropriate segregation of Kubernetes
resources and that all new resources are created in a specific namespace.

Default Value:

Unless a namespace is specific on object creation, the default namespace will be
used

Page 60

Internal Only - General

CIS Controls:

Controls
Version

Control

IG 1

IG2|IG3

v8

12.2 Establish and Maintain a Secure Network

Architecture

Establish and maintain a secure network architecture. A secure network
architecture must address segmentation, least privilege, and availability, at a
minimum.

v7

2.10 Physically or Logically Seqregate High Risk
Applications

Physically or logically segregated systems should be used to isolate and run
software that is required for business operations but incur higher risk for the
organization.

5 Managed services

This section consists of security recommendations for the direct configuration of GKE
AutoPilot managed service components, namely, Google Kubernetes Engine (GKE)
AutoPilot mode. These recommendations are directly applicable for features which exist
only as part of a managed service.

Internal Only - General

Page 61

5.1 Image Registry and Image Scanning

This section contains recommendations relating to container image registries and
securing images in those registries, such as Google Container Registry (GCR).

Page 62

Internal Only - General

5.1.1 Ensure Image Vulnerability Scanning is enabled
(Automated)

Profile Applicability:

o Level 2

Description:

Note: GCR is now deprecated, being superseded by Artifact Registry starting 15th May
2024. Runtime Vulnerability scanning is available via GKE Security Posture

Scan images stored in Google Container Registry (GCR) or Artifact Registry (AR) for
vulnerabilities.

Rationale:

Vulnerabilities in software packages can be exploited by malicious users to obtain
unauthorized access to local cloud resources. GCR Container Analysis API or Artifact
Registry Container Scanning API allow images stored in GCR or AR respectively to be
scanned for known vulnerabilities.

Impact:
None.

Audit:

For Images Hosted in GCR:

Using Google Cloud Console:

1. Go to GCR by visiting https://console.cloud.google.com/gcr
2. Select Settings and check if Vulnerability scanning is Enabled.

Using Command Line:

gcloud services list --enabled |

Ensure that the Container Registry API and Container Analysis API are listed in
the output.

For Images Hosted in AR:

Page 63

Internal Only - General

https://console.cloud.google.com/gcr

Using Google Cloud Console:

1. Go to AR by visiting https://console.cloud.google.com/artifacts
2. Select Settings and check if Vulnerability scanning is Enabled.

Using Command Line:

‘gcloud services list --enabled

Ensure that Container Scanning API and Artifact Registry API are listed in the
output.

Remediation:

For Images Hosted in GCR:

Using Google Cloud Console

1. Go to GCR by visiting: https://console.cloud.google.com/gcr
2. Select Settings and, under the Vulnerability Scanning heading, click the TURN
ON button.

Using Command Line

Igcloud services enable containeranalysis.googleapis.com

For Images Hosted in AR:

Using Google Cloud Console

1. Go to GCR by visiting: https://console.cloud.google.com/artifacts
2. Select Settings and, under the Vulnerability Scanning heading, click the ENABLE
button.

Using Command Line

Page 64

Internal Only - General

https://console.cloud.google.com/artifacts
https://console.cloud.google.com/gcr
https://console.cloud.google.com/artifacts

|gcloud services enable containerscanning.googleapis.com

Default Value:
By default, GCR Container Analysis and AR Container Scanning are disabled.

References:

1. https://cloud.google.com/artifact-reqgistry/docs/analysis

2. https://cloud.google.com/artifact-analysis/docs/os-overview

3. https://console.cloud.google.com/marketplace/product/google/containerreqistry.g
oogleapis.com

4. https://cloud.google.com/kubernetes-engine/docs/concepts/about-configuration-

scanning
5. https://containersecurity.googleapis.com

CIS Controls:

Controls

Version Control IG1(IG2|IG3

7.6 Perform Automated Vulnerability Scans of Externally-

Exposed Enterprise Assets
v8 Perform automated vulnerability scans of externally-exposed enterprise assets 1
using a SCAP-compliant vulnerability scanning tool. Perform scans on a monthly,
or more frequent, basis.

v7 3 Continuous Vulnerability Management
Continuous Vulnerability Management

3.1 Run Automated Vulnerability Scanning Tools
v7 Utilize an up-to-date SCAP-compliant vulnerability scanning tool to °
automatically scan all systems on the network on a weekly or more frequent basis
to identify all potential vulnerabilities on the organization's systems.

3.2 Perform Authenticated Vulnerability Scanning
v7 Perform authenticated vulnerability scanning with agents running locally on PY
each system or with remote scanners that are configured with elevated rights on
the system being tested.

Page 65

Internal Only - General

https://cloud.google.com/artifact-registry/docs/analysis
https://cloud.google.com/artifact-analysis/docs/os-overview
https://console.cloud.google.com/marketplace/product/google/containerregistry.googleapis.com
https://console.cloud.google.com/marketplace/product/google/containerregistry.googleapis.com
https://cloud.google.com/kubernetes-engine/docs/concepts/about-configuration-scanning
https://cloud.google.com/kubernetes-engine/docs/concepts/about-configuration-scanning
https://containersecurity.googleapis.com/

5.1.2 Minimize user access to Container Image repositories
(Manual)

Profile Applicability:
o Level 2
Description:

Note: GCR is now deprecated, see the references for more details.

Restrict user access to GCR or AR, limiting interaction with build images to only
authorized personnel and service accounts.

Rationale:

Weak access control to GCR or AR may allow malicious users to replace built images
with vulnerable or back-doored containers.

Impact:

Care should be taken not to remove access to GCR or AR for accounts that require this
for their operation. Any account granted the Storage Object Viewer role at the project
level can view all objects stored in GCS for the project.

Audit:

For Images Hosted in AR:

Go to Artifacts Browser by visiting https://console.cloud.google.com/artifacts
From the list of artifacts select each repository with format Docker

Under the Permissions tab, review the roles for each member and ensure only
authorized users have the Artifact Registry Administrator, Artifact Registry
Reader, Artifact Registry Repository Administrator and Artifact Registry Writer
roles.

W~

Users may have permissions to use Service Accounts and thus Users could inherit
privileges on the AR repositories. To check the accounts that could do this:

1. Go to IAM by visiting https://console.cloud.google.com/iam-admin/iam
2. Apply the filter Role: Service Account User.

Note that other privileged project level roles will have the ability to write and modify AR
repositories. Consult the GCP CIS benchmark and IAM documentation for further
reference.

Using Command Line:

Page 66

Internal Only - General

https://console.cloud.google.com/artifacts
https://console.cloud.google.com/iam-admin/iam

gcloud artifacts repositories get-iam-policy <repository-name> --location
<repository-location>

The output of the command will return roles associated with the AR repository and
which members have those roles.

For Images Hosted in GCR:

Using Google Cloud Console:
GCR bucket permissions

1. Go to Storage Browser by visiting
https://console.cloud.google.com/storage/browser

2. From the list of storage buckets, select
artifacts.<project_id>.appspot.com for the GCR bucket

3. Under the Permissions tab, review the roles for each member and ensure only
authorized users have the Storage Admin, Storage Object Admin, Storage Object
Creator, Storage Legacy Bucket Owner, Storage Legacy Bucket Writer and
Storage Legacy Object Owner roles.

Users may have permissions to use Service Accounts and thus Users could inherit
privileges on the GCR Bucket. To check the accounts that could do this:

1. Go to IAM by visiting https://console.cloud.google.com/iam-admin/iam
2. Apply the filter Role: Service Account User.

Note that other privileged project level roles will have the ability to write and modify
objects and the GCR bucket. Consult the GCP CIS benchmark and IAM documentation
for further reference.

Using Command Line:

To check GCR bucket specific permissions
Igsutil iam get gs://artifacts.<project id>.appspot.com |

The output of the command will return roles associated with the GCR bucket and which
members have those roles.

Additionally, run the following to identify users and service accounts that hold privileged
roles at the project level, and thus inherit these privileges within the GCR bucket:

Page 67

Internal Only - General

https://console.cloud.google.com/storage/browser
https://console.cloud.google.com/iam-admin/iam

gcloud projects get-iam-policy <project id> \
--flatten="bindings[] .members" \

-—format="table (bindings.members,bindings.role) ' \
--filter="bindings.role:roles/storage.admin OR
bindings.role:roles/storage.objectAdmin OR
bindings.role:roles/storage.objectCreator OR
bindings.role:roles/storage.legacyBucketOwner OR
bindings.role:roles/storage.legacyBucketWriter OR
bindings.role:roles/storage.legacyObjectOwner"

The output from the command lists the service accounts that have create/modify
permissions.

Users may have permissions to use Service Accounts and thus Users could inherit
privileges on the GCR Bucket. To check the accounts that could do this:

gcloud projects get-iam-policy <project id> \
-—flatten="bindings[] .members" \

-—format="table (bindings.members) ' \
--filter="bindings.role:roles/iam.serviceAccountUser"

Note that other privileged project level roles will have the ability to write and modify
objects and the GCR bucket. Consult the GCP CIS benchmark and IAM documentation
for further reference.

Remediation:

For Images Hosted in AR:

Using Google Cloud Console:

1. Go to Artifacts Browser by visiting https://console.cloud.google.com/artifacts
. From the list of artifacts select each repository with format Docker
3. Under the Permissions tab, modify the roles for each member and ensure only
authorized users have the Artifact Registry Administrator, Artifact Registry
Reader, Artifact Registry Repository Administrator and Artifact Registry Writer
roles.

Using Command Line:

gcloud artifacts repositories set-iam-policy <repository-name> <path-to-
policy-file> --location <repository-location>

To learn how to configure policy files see: hitps://cloud.google.com/artifact-
registry/docs/access-control#grant

For Images Hosted in GCR:

Using Google Cloud Console:
To modify roles granted at the GCR bucket level:

Page 68

Internal Only - General

https://console.cloud.google.com/artifacts
https://cloud.google.com/artifact-registry/docs/access-control#grant
https://cloud.google.com/artifact-registry/docs/access-control#grant

1. Go to Storage Browser by visiting:
https://console.cloud.google.com/storage/browser.

2. From the list of storage buckets, select
artifacts.<project_id>.appspot.com for the GCR bucket

3. Under the Permissions tab, modify permissions of the identified member via the
drop-down role menu and change the Role to Storage Object Viewer for read-
only access.

For a User or Service account with Project level permissions inherited by the GCR
bucket, or the Service Account User Role:

1. Go to IAM by visiting: https://console.cloud.google.com/iam-admin/iam

2. Find the User or Service account to be modified and click on the corresponding
pencil icon.

3. Remove the create/modify role (Storage Admin/Storage Object Admin/
Storage Object Creator/Service Account User) on the user or service
account.

4. If required add the Storage Object Viewer role - note with caution that this
permits the account to view all objects stored in GCS for the project.

Using Command Line:
To change roles at the GCR bucket level:
Firstly, run the following if read permissions are required:

gsutil iam ch <type>:<email address>:objectViewer
gs://artifacts.<project id>.appspot.com

Then remove the excessively privileged role (Storage Admin/Storage Object
Admin / Storage Object Creator) using:

gsutil iam ch -d <type>:<email address>:<role>
gs://artifacts.<project id>.appspot.com

where:

<type> can be one of the following:
o user,ifthe <email address> is a Google account.
o serviceAccount, if <email_address> specifies a Service account.
o <email_address> can be one of the following:
= a Google account (for example, someone@example.com).
= a Cloud IAM service account.

To modify roles defined at the project level and subsequently inherited within the GCR

bucket, or the Service Account User role, extract the IAM policy file, modify it
accordingly and apply it using:

Page 69

Internal Only - General

https://console.cloud.google.com/storage/browser
https://console.cloud.google.com/iam-admin/iam

|gcloud projects set-iam-policy <project id> <policy file>

Default Value:

By default, GCR is disabled and access controls are set during initialisation.

References:

https://cloud.google.com/container-reqistry/docs/

https://cloud.google.com/kKubernetes-engine/docs/how-to/service-accounts

https://cloud.google.com/kubernetes-engine/docs/how-to/iam

s~

https://cloud.google.com/artifact-registry/docs/access-control#grant

CIS Controls:

Controls
Version

Control

IG 1

IG2(IG3

v8

3.3 Configure Data Access Control Lists

Configure data access control lists based on a user’s need to know. Apply data
access control lists, also known as access permissions, to local and remote file
systems, databases, and applications.

v7

14.6 Protect Information through Access Control Lists
Protect all information stored on systems with file system, network share,
claims, application, or database specific access control lists. These controls will
enforce the principle that only authorized individuals should have access to the
information based on their need to access the information as a part of their

responsibilities.

Internal Only - General

Page 70

https://cloud.google.com/container-registry/docs/
https://cloud.google.com/kubernetes-engine/docs/how-to/service-accounts
https://cloud.google.com/kubernetes-engine/docs/how-to/iam
https://cloud.google.com/artifact-registry/docs/access-control#grant

5.1.3 Minimize cluster access to read-only for Container Image
repositories (Manual)

Profile Applicability:
o Level 2
Description:

Note: GCR is now deprecated, see the references for more details.

Configure the Cluster Service Account with Artifact Registry Viewer Role to only allow
read-only access to AR repositories. Configure the Cluster Service Account with
Storage Object Viewer Role to only allow read-only access to GCR.

Rationale:

The Cluster Service Account does not require administrative access to GCR or AR, only
requiring pull access to containers to deploy onto GKE. Restricting permissions follows
the principles of least privilege and prevents credentials from being abused beyond the
required role.

Impact:

A separate dedicated service account may be required for use by build servers and
other robot users pushing or managing container images.

Any account granted the Storage Object Viewer role at the project level can view all
objects stored in GCS for the project.

Audit:
For Images Hosted in AR:

Using Google Cloud Console

1. Go to Artifacts Browser by visiting https://console.cloud.google.com/artifacts

2. From the list of repositories, for each repository with Format Docker

3. Under the Permissions tab, review the role for GKE Service account and ensure
that only the Artifact Registry Viewer role is set.

Using Command Line:

gcloud artifacts repositories get-iam-policy <repository-name> --location
<repository-location>

The output of the command will return roles associated with the AR repository. If listed,
ensure the GKE Service accountis setto "role":
"roles/artifactregistry.reader".

Page 71

Internal Only - General

https://console.cloud.google.com/artifacts

For Images Hosted in GCR:

Using Google Cloud Console

1. Go to Storage Browser by visiting

https://console.cloud.google.com/storage/browser

2. From the list of storage buckets, select

artifacts.<project_id>.appspot.com for the GCR bucket

3. Under the Permissions tab, review the role for GKE Service account and ensure
that only the Storage Object Viewer role is set.

Using Command Line
GCR bucket permissions

|gsutil iam get gs://artifacts.<project id>.appspot.com

The output of the command will return roles associated with the GCR bucket. If listed,
ensure the GKE Service account is setto "role": "roles/storage.objectViewer".
If the GKE Service Account has project level permissions that are inherited within the
bucket, ensure that these are not privileged:

role:
role:
role:
role:
role:

roles/storage
roles/storage
roles/storage
roles/storage
roles/storage

gcloud projects get-iam-policy <project id> \
--flatten="bindings[] .members" \

-—-format="table (bindings.members,bindings.role) '
-—filter="bindings.role:roles/storage.admin OR
bindings.
bindings.
bindings.
bindings.
bindings.

.objectAdmin OR
.objectCreator OR
.legacyBucketOwner OR
.legacyBucketWriter OR
.legacyObjectOwner"

\

Your GKE Service Account should not be output when this command is run.

Remediation:

For Images Hosted in AR:

Using Google Cloud Console:

. Go to Artifacts Browser by visiting https://console.cloud.google.com/artifacts

1
2. From the list of repositories, for each repository with Format Docker
3

. Under the Permissions tab, modify the permissions for GKE Service account and

ensure that only the Artifact Registry Viewer role is set.

Using Command Line:
Add artifactregistry.reader role

Internal Only - General

Page 72

https://console.cloud.google.com/storage/browser
https://console.cloud.google.com/artifacts

gcloud artifacts repositories add-iam-policy-binding <repository> \
--location=<repository-location> \
--member="serviceAccount:<email-address>' \
--role='roles/artifactregistry.reader'

Remove any roles other than artifactregistry.reader

gcloud artifacts repositories remove-iam-policy-binding <repository> \
--location <repository-location> \
--member="'serviceAccount:<email-address>' \

--role='<role-name>"

For Images Hosted in GCR:

Using Google Cloud Console:
For an account explicitly granted access to the bucket:

1. Go to Storage Browser by visiting:
https://console.cloud.google.com/storage/browser.

2. From the list of storage buckets, select
artifacts.<project_id>.appspot.com for the GCR bucket.

3. Under the Permissions tab, modify permissions of the identified GKE Service
Account via the drop-down role menu and change to the Role to Storage
Object Viewer for read-only access.

For an account that inherits access to the bucket through Project level permissions:

1. Go to IAM console by visiting: hitps://console.cloud.google.com/iam-admin.

2. From the list of accounts, identify the required service account and select the
corresponding pencil icon.

3. Remove the Storage Admin/Storage Object Admin/Storage Object
Creator roles.

4. Addthe Storage Object Viewer role - note with caution that this permits the
account to view all objects stored in GCS for the project.

5. Click SAVE.

Using Command Line:
For an account explicitly granted to the bucket:
Firstly add read access to the Kubernetes Service Account:

gsutil iam ch <type>:<email address>:objectViewer
gs://artifacts.<project id>.appspot.com

where:

<type> can be one of the following:
o user,ifthe <email_address> is a Google account.
o serviceAccount, if <email address> specifies a Service account.

Page 73

Internal Only - General

https://console.cloud.google.com/storage/browser
https://console.cloud.google.com/iam-admin

o

<email_address> can be one of the following:

= a Google account (for example, someone@example.com).

= a Cloud IAM service account.

Then remove the excessively privileged role (Storage Admin/Storage Object
Admin / Storage Object Creator) using:

gsutil iam ch -d <type>:<email address>:<role>
gs://artifacts.<project id>.appspot.com

For an account that inherits access to the GCR Bucket through Project level
permissions, modify the Projects IAM policy file accordingly, then upload it using:

|gcloud projects set-iam-policy <project id> <policy file>

Default Value:

The default permissions for the cluster Service account is dependent on the initial
configuration and 1AM policy.

References:

1. hitps://cloud.google.com/container-registry/docs/

2. https://cloud.gooqle.com/kubernetes-engine/docs/how-to/service-accounts

3. https://cloud.google.com/kubernetes-engine/docs/how-to/iam

CIS Controls:

Controls
Version

Control

IG 1

IG2|IG3

v8

3.3 Configure Data Access Control Lists

Configure data access control lists based on a user’s need to know. Apply
data access control lists, also known as access permissions, to local and remote
file systems, databases, and applications.

v7

3.2 Perform Authenticated Vulnerability Scanning

Perform authenticated vulnerability scanning with agents running locally on
each system or with remote scanners that are configured with elevated rights on
the system being tested.

Internal Only - General

Page 74

https://cloud.google.com/container-registry/docs/
https://cloud.google.com/kubernetes-engine/docs/how-to/service-accounts
https://cloud.google.com/kubernetes-engine/docs/how-to/iam

5.1.4 Ensure only trusted container images are used (Automated)
Profile Applicability:

o Level 2

Description:

Use Binary Authorization to allowlist (whitelist) only approved container registries.
Rationale:

Allowing unrestricted access to external container registries provides the opportunity for
malicious or unapproved containers to be deployed into the cluster. Ensuring only
trusted container images are used reduces this risk.

Also see recommendation 5.10.4.
Impact:

All container images to be deployed to the cluster must be hosted within an approved
container image registry. If public registries are not on the allowlist, a process for
bringing commonly used container images into an approved private registry and
keeping them up to date will be required.

Audit:

Using Google Cloud Console:
Check that Binary Authorization is enabled for the GKE cluster:

1. Go to Kubernetes Engine by visiting:
https://console.cloud.google.com/kubernetes/list

2. Click on the cluster and on the Details pane, ensure that Binary Authorization is
set to 'Enabled'.

Then assess the contents of the policy:

1. Go to Binary Authorization by visiting:
https://console.cloud.google.com/security/binary-authorization

2. Ensure the project default rule is not set to 'Allow all images' under Policy
deployment rules.

3. Review the list of 'Images exempt from policy' for unauthorized container
registries.

Using Command Line:
Check that Binary Authorization is enabled for the GKE cluster:

gcloud container clusters describe <cluster name> --zone <compute zone> --
format Jjson | Jjg .binaryAuthorization

This will return the following if Binary Authorization is enabled:

Page 75

Internal Only - General

https://console.cloud.google.com/kubernetes/list
https://console.cloud.google.com/security/binary-authorization

{

"enabled": true

}

Then assess the contents of the policy:

|gcloud container binauthz policy export > current-policy.yaml

Ensure that the current policy is not configured to allow all images (evaluationMode:
ALWAYS_ALLOW).
Review the list of admissionWhitelistPatterns for unauthorized container registries.

cat current-policy.yaml
admissionWhitelistPatterns:

defaultAdmissionRule:
evaluationMode: ALWAYS ALLOW

Remediation:

Using Google Cloud Console:

1. Go to Binary Authorization by visiting:
https://console.cloud.google.com/security/binary-authorization

2. Enable Binary Authorization API (if disabled).

3. Go to Kubernetes Engine by visiting:

https://console.cloud.google.com/kubernetes/list.

Select Kubernetes cluster for which Binary Authorization is disabled.

Within the Details pane, under the Security heading, click on the pencil icon

called Edit binary authorization.

Ensure that Enable Binary Authorization is checked.

Click SAVE CHANGES.

Return to the Binary Authorization by visiting:

https://console.cloud.google.com/security/binary-authorization.

9. Set an appropriate policy for the cluster and enter the approved container
registries under Image paths.

o s

©O N

Using Command Line:
Update the cluster to enable Binary Authorization:

Igcloud container cluster update <cluster name> --enable-binauthz

Create a Binary Authorization Policy using the Binary Authorization Policy Reference:
https://cloud.google.com/binary-authorization/docs/policy-yaml-reference for guidance.
Import the policy file into Binary Authorization:

‘gcloud container binauthz policy import <yaml policy>

Default Value:

By default, Binary Authorization is disabled along with container registry allowlisting.

Page 76

Internal Only - General

https://console.cloud.google.com/security/binary-authorization
https://console.cloud.google.com/kubernetes/list
https://console.cloud.google.com/security/binary-authorization
https://cloud.google.com/binary-authorization/docs/policy-yaml-reference

References:

1. https://cloud.google.com/binary-authorization/docs/policy-yaml-reference

2. https://cloud.google.com/binary-authorization/docs/setting-up

CIS Controls:
Controls
- Control IG1({IG2|IG3
Version
2.5 Allowlist Authorized Software
v8 Use technical controls, such as application allowlisting, to ensure that only P
authorized software can execute or be accessed. Reassess bi-annually, or more
frequently.
5.2 Maintain Secure Images
Maintain secure images or templates for all systems in the enterprise based on
v7 the organization's approved configuration standards. Any new system deployment o
or existing system that becomes compromised should be imaged using one of
those images or templates.
5.3 Securely Store Master Images
v7 Store the master images and templates on securely configured servers, °
validated with integrity monitoring tools, to ensure that only authorized changes to
the images are possible.
Page 77

Internal Only - General

https://cloud.google.com/binary-authorization/docs/policy-yaml-reference
https://cloud.google.com/binary-authorization/docs/setting-up

5.2 Identity and Access Management (IAM)

This section contains recommendations relating to using Cloud IAM with GKE.

Page 78

Internal Only - General

5.2.1 Ensure GKE clusters are not running using the Compute
Engine default service account (Automated)

Profile Applicability:
o Level 2

Description:

Create and use minimally privileged Service accounts to run GKE clusters instead of
using the Compute Engine default Service account. Unnecessary permissions could be
abused in the case of a node compromise.

Rationale:

A GCP service account (as distinct from a Kubernetes ServiceAccount) is an identity
that an instance or an application can be used to run GCP API requests. This identity is
used to identify virtual machine instances to other Google Cloud Platform services. By
default, Kubernetes Engine nodes use the Compute Engine default service account.
This account has broad access by default, as defined by access scopes, making it
useful to a wide variety of applications on the VM, but it has more permissions than are
required to run your Kubernetes Engine cluster.

A minimally privileged service account should be created and used to run the
Kubernetes Engine cluster instead of using the Compute Engine default service
account, and create separate service accounts for each Kubernetes Workload (See
recommendation 5.2.2).

Kubernetes Engine requires, at a minimum, the node service account to have the
monitoring.viewer, monitoring.metricWriter, and logging.logWriter roles.
Additional roles may need to be added for the nodes to pull images from GCR.

Impact:

Instances are automatically granted the htips:/www.googleapis.com/auth/cloud-
platform scope to allow full access to all Google Cloud APIs. This is so that the IAM
permissions of the instance are completely determined by the IAM roles of the Service
account. Thus if Kubernetes workloads were using cluster access scopes to perform
actions using Google APIs, they may no longer be able to, if not permitted by the
permissions of the Service account. To remediate, follow recommendation 5.2.2.

The Service account roles listed here are the minimum required to run the cluster.
Additional roles may be required to pull from a private instance of Google Container
Registry (GCR).

Audit:

Using Google Cloud Console:

Page 79

Internal Only - General

https://www.googleapis.com/auth/cloud-platform
https://www.googleapis.com/auth/cloud-platform

1. Go to Kubernetes Engine by visiting
https://console.cloud.google.com/kubernetes/list

2. Select the cluster under test and under Security ensure Service account is not
set to default.

To check the permissions allocated to the service account are the minimum required for
cluster operation:

1. Go to IAM by visiting https://console.cloud.google.com/iam-admin/iam
2. From the list of Service accounts, ensure each cluster Service account has only
the following roles:

e Logs Writer
e Monitoring Metric Writer
e Monitoring Viewer

Using Command line:
To check which Service account is set for an existing cluster, run the following
command:

gcloud container clusters describe SCLUSTER NAME --zone S$SCOMPUTE ZONE --
format json | jg '.nodeConfig.serviceAccount'

The output of the above command will return default if default Service account is used
for Project access.

To check that the permissions allocated to the service account are the minimum
required for cluster operation:

gcloud projects get-iam-policy <project id> \
--flatten="bindings[] .members" \
--format="table (bindings.role) ' \
-—-filter="bindings.members:<service account>"

Review the output to ensure that the service account only has the roles required to run
the cluster:

e roles/logging.loghWriter
e roles/monitoring.metricWriter
e roles/monitoring.viewer

Remediation:

Using Google Cloud Console:
To create a minimally privileged service account:

1. Go to Service Accounts by visiting: https://console.cloud.google.com/iam-
admin/serviceaccounts.

2. Click on CREATE SERVICE ACCOUNT.

3. Enter Service Account Details.

Page 80

Internal Only - General

https://console.cloud.google.com/kubernetes/list
https://console.cloud.google.com/iam-admin/iam
https://console.cloud.google.com/iam-admin/serviceaccounts
https://console.cloud.google.com/iam-admin/serviceaccounts

Click CREATE AND CONTINUE.
Within Service Account permissions add the following roles:
o Logs Writer.
o Monitoring Metric Writer.
o Monitoring Viewer.
6. Click CONTINUE.
7. Grant users access to this service account and create keys as required.
8. Click DONE.

o~

Note: A new cluster will need to be created specifying the minimally privileged service
account, and workloads will need to be migrated to the new cluster and the old cluster
deleted.

Using Command Line:

To create a minimally privileged service account:

gcloud iam service-—accounts create <node sa name> --display-name "GKE Node
Service Account"

export NODE SA EMAIL=gcloud iam service-accounts list --format='value (email)''
-—-filter="'displayName:GKE Node Service Account'

Grant the following roles to the service account:

export PROJECT ID=gcloud config get-value project

gcloud projects add-iam-policy-binding <project id> --member
serviceAccount:<node sa email> --role roles/monitoring.metricWriter
gcloud projects add-iam-policy-binding <project id> --member
serviceAccount:<node sa email> --role roles/monitoring.viewer
gcloud projects add-iam-policy-binding <project id> --member
serviceAccount:<node sa email> --role roles/logging.logWriter

Note: A new cluster will need to be created specifying the minimally privileged service
account, and workloads will need to be migrated to the new cluster and the old cluster
deleted.

Default Value:

By default, nodes use the Compute Engine default service account when you create a
new cluster.

References:

1. https://cloud.google.com/compute/docs/access/service-
accounts#fcompute engine default service account

Page 81

Internal Only - General

https://cloud.google.com/compute/docs/access/service-accounts#compute_engine_default_service_account
https://cloud.google.com/compute/docs/access/service-accounts#compute_engine_default_service_account

CIS Controls:

Controls
. ntrol IG1|IG 2]l
Version Contro G1|IG2(IG3
4.7 Manage Default Accounts on Enterprise Assets and
Software
v8 Manage default accounts on enterprise assets and software, such as root, g

administrator, and other pre-configured vendor accounts. Example
implementations can include: disabling default accounts or making them unusable.

4.3 Ensure the Use of Dedicated Administrative Accounts
v7 Ensure that all users with administrative account access use a dedicated or °®
secondary account for elevated activities. This account should only be used for
administrative activities and not internet browsing, email, or similar activities.

Page 82

Internal Only - General

5.3 Cloud Key Management Service (Cloud KMS)

This section contains recommendations relating to using Cloud KMS with GKE.

Page 83

Internal Only - General

5.3.1 Ensure Kubernetes Secrets are encrypted using keys
managed in Cloud KMS (Automated)

Profile Applicability:
o Level 2

Description:

Encrypt Kubernetes secrets, stored in etcd, at the application-layer using a customer-
managed key in Cloud KMS.

Rationale:

By default, GKE encrypts customer content stored at rest, including Secrets. GKE
handles and manages this default encryption for you without any additional action on
your part.

Application-layer Secrets Encryption provides an additional layer of security for sensitive
data, such as user defined Secrets and Secrets required for the operation of the cluster,
such as service account keys, which are all stored in etcd.

Using this functionality, you can use a key, that you manage in Cloud KMS, to encrypt
data at the application layer. This protects against attackers in the event that they
manage to gain access to etcd.

Impact:

To use the Cloud KMS CryptoKey to protect etcd in the cluster, the 'Kubernetes Engine
Service Agent' Service account must hold the 'Cloud KMS CryptoKey
Encrypter/Decrypter' role.

Audit:

Using Google Cloud Console:

1. Go to Kubernetes Engine by visiting
https://console.cloud.google.com/kubernetes/list

2. From the list of clusters, click on each cluster to bring up the Details pane, and
ensure Application-layer Secrets Encryption is set to 'Enabled'.

Using Command Line:

gcloud container clusters describe $CLUSTER NAME --zone $COMPUTE ZONE --—
format json | Jjg '.databaseEncryption'

If configured correctly, the output from the command returns a response containing the
following detail:

Page 84

Internal Only - General

https://console.cloud.google.com/kubernetes/list

keyName=projects/<key project id>/locations/<location>/keyRings/<ring name>/c
ryptoKeys/<key name>]
state=ENCRYPTED

{
"currentState": "CURRENT STATE ENCRYPTED",
"keyName": "projects/<key project id>/locations/us-
centrall/keyRings/<ring name>/cryptoKeys/<key name>",
"state": "ENCRYPTED"

}

Remediation:

To enable Application-layer Secrets Encryption, several configuration items are
required. These include:

e Akeyring

¢« A key

o A GKE service account with Cloud KMS CryptoKey Encrypter/Decrypter
role

Once these are created, Application-layer Secrets Encryption can be enabled on an
existing or new cluster.

Using Google Cloud Console:

To create a key

1. Go to Cloud KMS by visiting https://console.cloud.google.com/security/kms.
2. Select CREATE KEY RING.

3. Enter a Key ring name and the region where the keys will be stored.

4. Click CREATE.

5. Enter a Key name and appropriate rotation period within the Create key pane.
6. Click CREATE.

To enable on a new cluster

1. Go to Kubernetes Engine by visiting:
https://console.cloud.google.com/kubernetes/list.

2. Click CREATE CLUSTER, and choose the required cluster mode.

3. Within the Security heading, under CLUSTER, check Encrypt secrets at the
application layer checkbox.

4. Select the kms key as the customer-managed key and, if prompted, grant
permissions to the GKE Service account.

5. Click CREATE.

To enable on an existing cluster

1. Go to Kubernetes Engine by visiting:
https://console.cloud.google.com/kubernetes/list.

Page 85

Internal Only - General

https://console.cloud.google.com/security/kms
https://console.cloud.google.com/kubernetes/list
https://console.cloud.google.com/kubernetes/list

Select the cluster to be updated.

Under the Details pane, within the Security heading, click on the pencil named
Application-layer secrets encryption.

4. Enable Encrypt secrets at the application layer and choose a kms key.
5. Click SAVE CHANGES.

L

Using Command Line:
To create a key:
Create a key ring:

gcloud kms keyrings create <ring name> --location <location> --project
<key project id>

Create a key:

gcloud kms keys create <key name> --location <location> --keyring <ring name>
—--purpose encryption --project <key project id>

Grant the Kubernetes Engine Service Agent service account the Cloud KMS
CryptoKey Encrypter/Decrypter role:

gcloud kms keys add-iam-policy-binding <key name> --location <location> --
keyring <ring name> --member serviceAccount:<service account name> --role
roles/cloudkms.cryptoKeyEncrypterDecrypter --project <key project id>

To create a new cluster with Application-layer Secrets Encryption:

gcloud container clusters create <cluster name> --cluster-version=latest --
zone <zone> --database-encryption-key

projects/<key project id>/locations/<location>/keyRings/<ring name>/cryptoKey
s/<key name> --project <cluster project id>

To enable on an existing cluster:

gcloud container clusters update <cluster name> --zone <zone> --database-
encryption-key

projects/<key project id>/locations/<location>/keyRings/<ring name>/cryptoKey
s/<key name> --project <cluster project id>

Default Value:
By default, Application-layer Secrets Encryption is disabled.

References:

1. hitps://cloud.google.com/kubernetes-engine/docs/how-to/encrypting-secrets

Page 86

Internal Only - General

https://cloud.google.com/kubernetes-engine/docs/how-to/encrypting-secrets

CIS Controls:

Controls

Version Control IG1(IG2|IG3

3.11 Encrypt Sensitive Data at Rest

Encrypt sensitive data at rest on servers, applications, and databases containing
sensitive data. Storage-layer encryption, also known as server-side encryption,
v8 meets the minimum requirement of this Safeguard. Additional encryption methods ®
may include application-layer encryption, also known as client-side encryption,
where access to the data storage device(s) does not permit access to the plain-text
data.

14.8 Encrypt Sensitive Information at Rest
v7 Encrypt all sensitive information at rest using a tool that requires a secondary PY
authentication mechanism not integrated into the operating system, in order to
access the information.

Page 87

Internal Only - General

5.4 Cluster Networking

This section contains recommendations relating to network security configurations in
GKE.

Page 88

Internal Only - General

5.4.1 Enable VPC Flow Logs and Intranode Visibility (Automateqd)
Profile Applicability:

e Level 1

Description:

Enable VPC Flow Logs and Intranode Visibility to see pod-level traffic, even for traffic
within a worker node.

Rationale:

Enabling Intranode Visibility makes intranode pod to pod traffic visible to the networking
fabric. With this feature, VPC Flow Logs or other VPC features can be used for
intranode traffic.

Impact:

Enabling it on existing cluster causes the cluster master and the cluster nodes to restart,
which might cause disruption.

Audit:
Using Google Cloud Console:

1. Go to Kubernetes Engine by visiting:
https://console.cloud.google.com/kubernetes/list

2. Select the desired cluster, and under the Cluster section, make sure that
Intranode visibility is setto Enabled.

Using Command Line:
Run this command:

gcloud container clusters describe $CLUSTER NAME --zone $COMPUTE ZONE --—
format Jjson | Jgq '.networkConfig.enableIntraNodeVisibility'

The result should return true if Intranode Visibility is Enabled.
Remediation:

Enable Intranode Visibility:
Using Google Cloud Console:

1. Go to Kubernetes Engine by visiting:
https://console.cloud.google.com/kubernetes/list.

2. Select Kubernetes clusters for which intranode visibility is disabled.

3. Within the Details pane, under the Network section, click on the pencil icon
named Edit intranode visibility.

4. Check the box nextto Enable Intranode visibility.

Page 89

Internal Only - General

https://console.cloud.google.com/kubernetes/list
https://console.cloud.google.com/kubernetes/list

5. Click SAVE CHANGES.

Using Command Line:
To enable intranode visibility on an existing cluster, run the following command:

gcloud container clusters update <cluster name> --enable-intra-node-
visibility

Enable VPC Flow Logs:
Using Google Cloud Console:

1. Go to Kubernetes Engine by visiting:
https://console.cloud.google.com/kubernetes/list.

2. Select Kubernetes clusters for which VPC Flow Logs are disabled.

3. Select Nodes tab.

4. Select Node Pool without VPC Flow Logs enabled.

5. Select an Instance Group within the node pool.

6. Selectan Instance Group Member.

7

8

9

1

. Select the Subnetwork under Network Interfaces.
. Click on EDIT.

. Set Flow logs to On.

0.Click SAVE.

Using Command Line:

1. Find the subnetwork name associated with the cluster.

gcloud container clusters describe <cluster name> --region <cluster region> -
-format json | jg '.subnetwork'

2. Update the subnetwork to enable VPC Flow Logs.

‘gcloud compute networks subnets update <subnet name> --enable-flow-logs

Default Value:
By default, Intranode Visibility is disabled.

References:

1. hitps://cloud.google.com/kubernetes-engine/docs/how-to/intranode-visibility
2. https://cloud.gooqle.com/vpc/docs/using-flow-logs

Page 90

Internal Only - General

https://console.cloud.google.com/kubernetes/list
https://cloud.google.com/kubernetes-engine/docs/how-to/intranode-visibility
https://cloud.google.com/vpc/docs/using-flow-logs

CIS Controls:

Internal Only - General

Controls
. Control IG1|IG2|IG3
Version
8.5 Collect Detailed Audit Logs
v8 Configure detailed audit logging for enterprise assets containing sensitive data. PY
Include event source, date, username, timestamp, source addresses, destination
addresses, and other useful elements that could assist in a forensic investigation.
6.3 Enable Detailed Logging
v7 Enable system logging to include detailed information such as an event source, P
date, user, timestamp, source addresses, destination addresses, and other useful
elements.
Page 91

5.4.2 Ensure Control Plane Authorized Networks is Enabled
(Automated)

Profile Applicability:
o Level 2

Description:

Enable Control Plane Authorized Networks to restrict access to the cluster's control
plane to only an allowlist of authorized IPs.

Rationale:

Authorized networks are a way of specifying a restricted range of IP addresses that are
permitted to access your cluster's control plane. Kubernetes Engine uses both
Transport Layer Security (TLS) and authentication to provide secure access to your
cluster's control plane from the public internet. This provides you the flexibility to
administer your cluster from anywhere; however, you might want to further restrict
access to a set of IP addresses that you control. You can set this restriction by
specifying an authorized network.

Control Plane Authorized Networks blocks untrusted IP addresses. Google Cloud
Platform IPs (such as traffic from Compute Engine VMs) can reach your master through
HTTPS provided that they have the necessary Kubernetes credentials.

Restricting access to an authorized network can provide additional security benefits for
your container cluster, including:

« Better protection from outsider attacks: Authorized networks provide an
additional layer of security by limiting external, non-GCP access to a specific set
of addresses you designate, such as those that originate from your premises.
This helps protect access to your cluster in the case of a vulnerability in the
cluster's authentication or authorization mechanism.

« Better protection from insider attacks: Authorized networks help protect your
cluster from accidental leaks of master certificates from your company's
premises. Leaked certificates used from outside GCP and outside the authorized
IP ranges (for example, from addresses outside your company) are still denied
access.

Impact:

When implementing Control Plane Authorized Networks, be careful to ensure all desired
networks are on the allowlist to prevent inadvertently blocking external access to your
cluster's control plane.

Audit:

Using Google Cloud Console:
Page 92

Internal Only - General

1. Go to Kubernetes Engine by visiting:
https://console.cloud.google.com/kubernetes/list

2. From the list of clusters, click on the cluster to open the Details page and make
sure 'Control plane authorized networks' is set to 'Enabled'.

Using Command Line:
To check Master Authorized Networks status for an existing cluster, run the following

command;
gcloud container clusters describe $CLUSTER NAME --zone $COMPUTE ZONE --—
format Jjson | Jjg '.masterAuthorizedNetworksConfig'

The output should include

{
"enabled": true,
"gcpPublicCidrsAccessEnabled": true
}

if Control Plane Authorized Networks is enabled.
Remediation:

Using Google Cloud Console:

1. Go to Kubernetes Engine by visiting
https://console.cloud.google.com/kubernetes/list

2. Select Kubernetes clusters for which Control Plane Authorized Networks is
disabled

3. Within the Details pane, under the Networking heading, click on the pencil icon
named Edit control plane authorised networks.

4. Check the box next to Enable control plane authorised networks.

5. Click SAVE CHANGES.

Using Command Line:
To enable Control Plane Authorized Networks for an existing cluster, run the following
sample command changing the IP range for fit your network:

gcloud container clusters update SCLUSTER NAME --region $REGION --enable-
master-authorized-networks --master-authorized-networks 192.168.1.0/24

Along with this, you can list authorized networks using the --master-authorized-
networks flag which contains a list of up to 20 external networks that are allowed to
connect to your cluster's control plane through HTTPS. You provide these networks as
a comma-separated list of addresses in CIDR notation (such as 90.90.100.0/24).

Default Value:

By default, Control Plane Authorized Networks is disabled.

Page 93

Internal Only - General

https://console.cloud.google.com/kubernetes/list
https://console.cloud.google.com/kubernetes/list

References:

1. https://cloud.google.com/kubernetes-engine/docs/how-to/authorized-networks

CIS Controls:

Controls

Version Control IG1(IG2(IG3

3.3 Configure Data Access Control Lists
v8 Configure data access control lists based on a user’s need to know. Apply data PY
access control lists, also known as access permissions, to local and remote file
systems, databases, and applications.

14.6 Protect Information through Access Control Lists

Protect all information stored on systems with file system, network share,
v7 claims, application, or database specific access control lists. These controls will P
enforce the principle that only authorized individuals should have access to the
information based on their need to access the information as a part of their
responsibilities.

Page 94

Internal Only - General

https://cloud.google.com/kubernetes-engine/docs/how-to/authorized-networks

5.4.3 Ensure clusters are created with Private Endpoint Enabled
and Public Access Disabled (Automated)

Profile Applicability:

o Level 2

Description:

Disable access to the Kubernetes API from outside the node network if it is not required.
Rationale:

In a private cluster, the master node has two endpoints, a private and public endpoint.
The private endpoint is the internal IP address of the master, behind an internal load
balancer in the master's VPC network. Nodes communicate with the master using the
private endpoint. The public endpoint enables the Kubernetes API to be accessed from
outside the master's VPC network.

Although Kubernetes API requires an authorized token to perform sensitive actions, a
vulnerability could potentially expose the Kubernetes publically with unrestricted access.
Additionally, an attacker may be able to identify the current cluster and Kubernetes API
version and determine whether it is vulnerable to an attack. Unless required, disabling
public endpoint will help prevent such threats, and require the attacker to be on the
master's VPC network to perform any attack on the Kubernetes API.

Impact:

To enable a Private Endpoint, the cluster has to also be configured with private nodes, a
private master IP range and IP aliasing enabled.

If the Private Endpoint flag --enable-private-endpoint is passed to the gcloud CLI,
or the external IP address undefined in the Google Cloud Console during cluster
creation, then all access from a public IP address is prohibited.

Audit:

Using Google Cloud Console:

1. Go to Kubernetes Engine by visiting
https://console.cloud.google.com/kubernetes/list

2. Select the required cluster, and within the Details pane, make sure the 'Endpoint’
does not have a public IP address.

Using Command Line:
Run this command:

Page 95

Internal Only - General

https://console.cloud.google.com/kubernetes/list

gcloud container clusters describe SCLUSTER NAME --zone S$SCOMPUTE ZONE --
format json | jg '.privateClusterConfig.enablePrivateEndpoint'

The output of the above command returns true if a Private Endpoint is enabled with
Public Access disabled.

Remediation:

Once a cluster is created without enabling Private Endpoint only, it cannot be
remediated. Rather, the cluster must be recreated.
Using Google Cloud Console:

1. Go to Kubernetes Engine by visiting
https://console.cloud.google.com/kubernetes/list

2. Click CREATE CLUSTER, and choose CONFIGURE for the Standard mode

cluster.

Configure the cluster as required then click Networking under CLUSTER in the

navigation pane.

Under IPv4 network access, click the Private cluster radio button.

Uncheck the Access control plane using its external IP address checkbox.

In the Control plane IP range textbox, provide an IP range for the control plane.

Configure the other settings as required, and click CREATE.

w

NOo oA

Using Command Line:
Create a cluster with a Private Endpoint enabled and Public Access disabled by
including the --enable-private-endpoint flag within the cluster create command:

gcloud container clusters create-auto <cluster name> --location SLOCATION --
enable-private-endpoint

Setting this flag also requires the setting of --enable-private-nodes and --enable-
master-authorized-networks.

Default Value:
By default, the Private Endpoint is disabled.

References:

1. https://cloud.google.com/kubernetes-engine/docs/how-to/private-clusters

CIS Controls:

Controls

Version Control IG1(IG2|IG3

4.4 Implement and Manage a Firewall on Servers
v8 Implement and manage a firewall on servers, where supported. Example Py
implementations include a virtual firewall, operating system firewall, or a third-
party firewall agent.

Page 96

Internal Only - General

https://console.cloud.google.com/kubernetes/list
https://cloud.google.com/kubernetes-engine/docs/how-to/private-clusters

Controls
Version Control IG1(IG2(IG3
v7 12 Boundary Defense
Boundary Defense
Page 97

Internal Only - General

5.4.4 Ensure clusters are created with Private Nodes (Automated)
Profile Applicability:
e Level 2

Description:

Private Nodes are nodes with no public IP addresses. Disable public IP addresses for
cluster nodes, so that they only have private IP addresses.

Rationale:

Disabling public IP addresses on cluster nodes restricts access to only internal
networks, forcing attackers to obtain local network access before attempting to
compromise the underlying Kubernetes hosts.

Impact:

To enable Private Nodes, the cluster has to also be configured with a private master IP
range and IP Aliasing enabled.

Private Nodes do not have outbound access to the public internet. If you want to provide
outbound Internet access for your private nodes, you can use Cloud NAT or you can
manage your own NAT gateway.

To access Google Cloud APIs and services from private nodes, Private Google Access
needs to be set on Kubernetes Engine Cluster Subnets.

Audit:
Using Google Cloud Console:

1. Go to Kubernetes Engine by visiting:
https://console.cloud.google.com/kubernetes/list.

2. Select the desired cluster, and within the Details pane, make sure Private
Cluster is set to Enabled.

Using Command Line:
Run this command:

gcloud container clusters describe SCLUSTER NAME --zone S$COMPUTE ZONE --
format json | jg '.privateClusterConfig.enablePrivateNodes'

The output of the above command returns true if Private Nodes is enabled.
Remediation:

Once a cluster is created without enabling Private Nodes, it cannot be remediated.
Rather the cluster must be recreated.
Using Google Cloud Console:

Page 98

Internal Only - General

https://console.cloud.google.com/kubernetes/list

1.
2.
3. Configure the cluster as required then click Networking under CLUSTER in the

4.
5

Go to Kubernetes Engine by visiting:
https://console.cloud.google.com/kubernetes/list.

Click CREATE CLUSTER.

navigation pane.

Under IPv4 network access, click the Private cluster radio button.
. Configure the other settings as required, and click CREATE.

Using Command Line:
To create a cluster with Private Nodes enabled, include the --enable-private-nodes
flag within the cluster create command:

gcloud container clusters create <cluster name> --location SLOCATION --
enable-private-nodes

Default Value:

By default, Private Nodes are disabled.

References:
1. https://cloud.google.com/kubernetes-engine/docs/how-to/private-clusters
CIS Controls:
ntrol
Controls Control IG 1(IG 2[IG 3
Version
4.4 Implement and Manage a Firewall on Servers
v8 Implement and manage a firewall on servers, where supported. Example PY
implementations include a virtual firewall, operating system firewall, or a third-
party firewall agent.
v7 12 Boundary Defense
Boundary Defense
Page 99

Internal Only - General

https://console.cloud.google.com/kubernetes/list
https://cloud.google.com/kubernetes-engine/docs/how-to/private-clusters

5.4.5 Ensure use of Google-managed SSL Certificates
(Automated)

Profile Applicability:

o Level 2

Description:

Encrypt traffic to HTTPS load balancers using Google-managed SSL certificates.
Rationale:

Encrypting traffic between users and the Kubernetes workload is fundamental to
protecting data sent over the web.

Google-managed SSL Certificates are provisioned, renewed, and managed for domain
names. This is only available for HTTPS load balancers created using Ingress
Resources, and not TCP/UDP load balancers created using Service of
type:LoadBalancer.

Impact:

Google-managed SSL Certificates are less flexible than certificates that are self
obtained and managed. Managed certificates support a single, non-wildcard domain.
Self-managed certificates can support wildcards and multiple subject alternative names
(SANSs).

Audit:

Using Command Line:
Identify if there are any workloads exposed publicly using Services of
type:LoadBalancer:

kubectl get svc -A -o json | jg '.items[] |
select (.spec.type=="LoadBalancer")'

Consider using ingresses instead of these services in order to use Google managed
SSL certificates.
For the ingresses within the cluster, run the following command:

kubectl get ingress -A -o json | jg .items[] | jg '{name: .metadata.name,
annotations: .metadata.annotations, namespace: .metadata.namespace, status:
.status}'

The above command should return the name of the ingress, namespace, annotations
and status. Check that the following annotation is present to ensure managed
certificates are referenced.

Page 100

Internal Only - General

"annotations": {

"networking.gke.io/managed-certificates": "<example certificate>"

}y

For completeness, run the following command to ensure that the managed certificate
resource exists:

kubectl get managedcertificates -A

The above command returns a list of managed certificates for which
<example_certificate> should exist within the same namespace as the ingress.

Remediation:

If services of type:LoadBalancer are discovered, consider replacing the Service with
an Ingress.

To configure the Ingress and use Google-managed SSL certificates, follow the
instructions as listed at: https://cloud.google.com/kubernetes-engine/docs/how-
to/managed-certs.

Default Value:

By default, Google-managed SSL Certificates are not created when an Ingress resource
is defined.

References:

1. https://cloud.google.com/kubernetes-engine/docs/how-to/managed-certs
2. https://cloud.google.com/kubernetes-engine/docs/concepts/ingress

CIS Controls:

Controls

Version Control IG1(IG2|IG3

3.10 Encrypt Sensitive Data in Transit
v8 Encrypt sensitive data in transit. Example implementations can include: ®
Transport Layer Security (TLS) and Open Secure Shell (OpenSSH).

v7 14.4 Encrypt All Sensitive Information in Transit
Encrypt all sensitive information in transit.

Page 101

Internal Only - General

https://cloud.google.com/kubernetes-engine/docs/how-to/managed-certs
https://cloud.google.com/kubernetes-engine/docs/how-to/managed-certs
https://cloud.google.com/kubernetes-engine/docs/how-to/managed-certs
https://cloud.google.com/kubernetes-engine/docs/concepts/ingress

5.5 Authentication and Authorization

This section contains recommendations relating to authentication and authorization in
GKE.

Page 102

Internal Only - General

5.5.1 Manage Kubernetes RBAC users with Google Groups for
GKE (Manual)

Profile Applicability:
o Level 2
Description:

Cluster Administrators should leverage G Suite Groups and Cloud IAM to assign
Kubernetes user roles to a collection of users, instead of to individual emails using only
Cloud IAM.

Rationale:

On- and off-boarding users is often difficult to automate and prone to error. Using a
single source of truth for user permissions via G Suite Groups reduces the number of
locations that an individual must be off-boarded from, and prevents users gaining
unique permissions sets that increase the cost of audit.

Impact:

When migrating to using security groups, an audit of RoleBindings and
ClusterRoleBindings is required to ensure all users of the cluster are managed using
the new groups and not individually.

When managing RoleBindings and ClusterRoleBindings, be wary of inadvertently
removing bindings required by service accounts.

Audit:

Using G Suite Admin Console and Google Cloud Console

1. Navigate to manage G Suite Groups in the Google Admin console at:
https://admin.google.com/dashboard

2. Ensure there is a group named gke-security-groups@[yourdomain.com].
The group must be named exactly gke-security-groups.

3. Ensure only further groups (not individual users) are included in the gke-
security-groups group as members.

4. Go to the Kubernetes Engine by visiting:
https://console.cloud.google.com/kubernetes/list.

5. From the list of clusters, click on the desired cluster. In the Details pane, make
sure Google Groups for RBAC is setto Enabled.

Page 103

Internal Only - General

https://admin.google.com/dashboard
https://console.cloud.google.com/kubernetes/list

Remediation:

Follow the G Suite Groups instructions at: https://cloud.google.com/kubernetes-
engine/docs/how-to/role-based-access-control#google-groups-for-gke.
Then, create a cluster with:

gcloud container clusters create <cluster name> --security-group
<security group name>

Finally create Roles, ClusterRoles, RoleBindings, and ClusterRoleBindings that
reference the G Suite Groups.

Default Value:
Google Groups for GKE is disabled by default.

References:

1. hitps://cloud.google.com/kubernetes-engine/docs/how-to/google-groups-rbac
2. https://cloud.google.com/kubernetes-engine/docs/how-to/role-based-access-
control

CIS Controls:

Controls

. Control IG1(IG2|IG3
Version

6.8 Define and Maintain Role-Based Access Control

Define and maintain role-based access control, through determining and
v8 documenting the access rights necessary for each role within the enterprise to P
successfully carry out its assigned duties. Perform access control reviews of
enterprise assets to validate that all privileges are authorized, on a recurring
schedule at a minimum annually, or more frequently.

16.2 Configure Centralized Point of Authentication
v7 Configure access for all accounts through as few centralized points of L
authentication as possible, including network, security, and cloud systems.

Page 104

Internal Only - General

https://cloud.google.com/kubernetes-engine/docs/how-to/role-based-access-control#google-groups-for-gke
https://cloud.google.com/kubernetes-engine/docs/how-to/role-based-access-control#google-groups-for-gke
https://cloud.google.com/kubernetes-engine/docs/how-to/google-groups-rbac
https://cloud.google.com/kubernetes-engine/docs/how-to/role-based-access-control
https://cloud.google.com/kubernetes-engine/docs/how-to/role-based-access-control

5.6 Storage

This section contains recommendations relating to security-related configurations for
storage in GKE.

Page 105

Internal Only - General

5.6.1 Enable Customer-Managed Encryption Keys (CMEK) for
GKE Persistent Disks (PD) (Manual)

Profile Applicability:
o Level 2

Description:

Use Customer-Managed Encryption Keys (CMEK) to encrypt dynamically-provisioned
attached Google Compute Engine Persistent Disks (PDs) using keys managed within
Cloud Key Management Service (Cloud KMS).

Rationale:

GCE persistent disks are encrypted at rest by default using envelope encryption with
keys managed by Google. For additional protection, users can manage the Key
Encryption Keys using Cloud KMS.

Impact:

Encryption of dynamically-provisioned attached disks requires the use of the self-
provisioned Compute Engine Persistent Disk CSI Driver v0.5.1 or higher.

If CMEK is being configured with a regional cluster, the cluster must run GKE 1.14 or
higher.

Audit:
Using Google Cloud Console:

1. Go to Compute Engine Disks by visiting:
https://console.cloud.google.com/compute/disks

2. Select each disk used by the cluster, and ensure the Encryption Type is listed
as Customer Managed.

Using Command Line:
Identify the Persistent Volumes Used by the cluster:

kubectl get pv -o json | jg '.items[].metadata.name'

For each volume used, check that it is encrypted using a customer managed key by
running the following command:

gcloud compute disks describe <pv name> --zone <compute zone> --format json |
jg '.diskEncryptionKey.kmsKeyName'

This returns null ({ }) if a customer-managed encryption key is not used to encrypt the
disk.

Page 106

Internal Only - General

https://console.cloud.google.com/compute/disks

Remediation:

This cannot be remediated by updating an existing cluster. The node pool must either
be recreated or a new cluster created.

Using Google Cloud Console:

This is not possible using Google Cloud Console.

Using Command Line:

Follow the instructions detailed at: https://cloud.google.com/kubernetes-
engine/docs/how-to/using-cmek.

Default Value:

Persistent disks are encrypted at rest by default, but are not encrypted using Customer-
Managed Encryption Keys by default. By default, the Compute Engine Persistent Disk
CSI Driver is not provisioned within the cluster.

References:

https://cloud.google.com/kubernetes-engine/docs/how-to/using-cmek
https://cloud.google.com/compute/docs/disks/customer-managed-encryption
https://cloud.google.com/security/encryption-at-rest/default-encryption/
https://cloud.google.com/kubernetes-engine/docs/concepts/persistent-volumes
https://cloud.google.com/sdk/qgcloud/reference/container/node-pools/create

Al A

CIS Controls:

Controls

Version Control IG1(IG2(IG3

3.11 Encrypt Sensitive Data at Rest

Encrypt sensitive data at rest on servers, applications, and databases containing
sensitive data. Storage-layer encryption, also known as server-side encryption,
v8 meets the minimum requirement of this Safeguard. Additional encryption methods]
may include application-layer encryption, also known as client-side encryption,
where access to the data storage device(s) does not permit access to the plain-text
data.

14.8 Encrypt Sensitive Information at Rest
v7 Encrypt all sensitive information at rest using a tool that requires a secondary P
authentication mechanism not integrated into the operating system, in order to
access the information.

Page 107

Internal Only - General

https://cloud.google.com/kubernetes-engine/docs/how-to/using-cmek
https://cloud.google.com/kubernetes-engine/docs/how-to/using-cmek
https://cloud.google.com/kubernetes-engine/docs/how-to/using-cmek
https://cloud.google.com/compute/docs/disks/customer-managed-encryption
https://cloud.google.com/security/encryption-at-rest/default-encryption/
https://cloud.google.com/kubernetes-engine/docs/concepts/persistent-volumes
https://cloud.google.com/sdk/gcloud/reference/container/node-pools/create

5.7 Other Cluster Configurations

This section contains recommendations relating to any remaining security-related
cluster configurations in GKE.

Page 108

Internal Only - General

5.7.1 Enable Security Posture (Manual)
Profile Applicability:

e Level 2

Description:

Rationale:

The security posture dashboard provides insights about your workload security posture
at the runtime phase of the software delivery life-cycle.

Impact:

GKE security posture configuration auditing checks your workloads against a set of
defined best practices. Each configuration check has its own impact or risk. Learn more
about the checks: hitps://cloud.google.com/kubernetes-engine/docs/concepts/about-
configuration-scanning

Example: The host namespace check identifies pods that share host namespaces.
Pods that share host namespaces allow Pod processes to communicate with host
processes and gather host information, which could lead to a container escape

Audit:

Check the SecurityPostureConfig on your cluster:
gcloud container clusters --location describe
securityPostureConfig: mode: BASIC

Remediation:

Enable security posture via the Ul, gCloud or API. https://cloud.google.com/kubernetes-
engine/docs/how-to/protect-workload-configuration

Default Value:

GKE security posture has multiple features. Not all are on by default. Configuration
auditing is enabled by default for new standard and autopilot clusters.

securityPostureConfig: mode: BASIC

References:

1. https://cloud.google.com/kubernetes-engine/docs/concepts/about-security-
posture-dashboard

Page 109

Internal Only - General

https://cloud.google.com/kubernetes-engine/docs/concepts/about-configuration-scanning
https://cloud.google.com/kubernetes-engine/docs/concepts/about-configuration-scanning
https://cloud.google.com/kubernetes-engine/docs/how-to/protect-workload-configuration
https://cloud.google.com/kubernetes-engine/docs/how-to/protect-workload-configuration
https://cloud.google.com/kubernetes-engine/docs/concepts/about-security-posture-dashboard
https://cloud.google.com/kubernetes-engine/docs/concepts/about-security-posture-dashboard

CIS Controls:

Controls
Version

Control

IG 1

IG2|IG3

v8

2.4 Utilize Automated Software Inventory Tools
Utilize software inventory tools, when possible, throughout the enterprise to
automate the discovery and documentation of installed software.

v7

5.5 Implement Automated Configuration Monitoring
Systems

Utilize a Security Content Automation Protocol (SCAP) compliant configuration
monitoring system to verify all security configuration elements, catalog approved
exceptions, and alert when unauthorized changes occur.

Internal Only - General

Page 110

Appendix: Summary Table

Internal Only - General

CIS Benchmark Recommendation Set
Correctly
Yes | No
1 Control Plane Components
2 Control Plane Configuration
3 Worker Nodes
4 Policies
4.1 RBAC and Service Accounts
4.1.1 Ensure that the cluster-admin role is only used where O O
required (Automated)
41.2 Minimize access to secrets (Automated)
41.3 Minimize wildcard use in Roles and ClusterRoles
(Automated)
41.4 Ensure that default service accounts are not actively O O
used (Automated)
41.5 Ensure that Service Account Tokens are only mounted O O
where necessary (Automated)
4.1.6 Avoid use of system:masters group (Automated)
41.7 Limit use of the Bind, Impersonate and Escalate
permissions in the Kubernetes cluster (Manual)
41.8 Avoid bindings to system:anonymous (Automated)
41.9 Avoid non-default bindings to system:unauthenticated
(Automated)
4110 Avoid non-default bindings to system:authenticated O O
(Automated)
4.2 Pod Security Standards
Page 111

Internal Only - General

CIS Benchmark Recommendation Set
Correctly
Yes | No

4.2.1 Ensure that the cluster enforces Pod Security Standard | O O
Baseline profile or stricter for all namespaces. (Manual)

4.3 Network Policies and CNI

4.3.1 Ensure that all Namespaces have Network Policies O O
defined (Automated)

4.4 Secrets Management

4.4.1 Consider external secret storage (Manual) O O

4.5 Extensible Admission Control

4.5.1 Configure Image Provenance using O O
ImagePolicyWebhook admission controller (Manual)

4.6 General Policies

4.6.1 Create administrative boundaries between resources O O
using namespaces (Manual)

4.6.2 Ensure that the seccomp profile is set to RuntimeDefault | O O
in the pod definitions (Automated)

46.3 Apply Security Context to Pods and Containers (Manual)

4.6.4 The default namespace should not be used (Automated)

5 Managed services

5.1 Image Registry and Image Scanning

5.1.1 Ensure Image Vulnerability Scanning is enabled O O
(Automated)

51.2 Minimize user access to Container Image repositories O O
(Manual)

513 Minimize cluster access to read-only for Container Image | O O
repositories (Manual)

Page 112

Internal Only - General

CIS Benchmark Recommendation Set
Correctly
Yes | No

514 Ensure only trusted container images are used O O
(Automated)

5.2 Identity and Access Management (IAM)

5.2.1 Ensure GKE clusters are not running using the Compute | O O
Engine default service account (Automated)

5.3 Cloud Key Management Service (Cloud KMS)

5.3.1 Ensure Kubernetes Secrets are encrypted using keys O O
managed in Cloud KMS (Automated)

5.4 Cluster Networking

5.4.1 Enable VPC Flow Logs and Intranode Visibility O O
(Automated)

542 Ensure Control Plane Authorized Networks is Enabled O O
(Automated)

5.4.3 Ensure clusters are created with Private Endpoint O O
Enabled and Public Access Disabled (Automated)

54.4 Ensure clusters are created with Private Nodes O O
(Automated)

545 Ensure use of Google-managed SSL Certificates O O
(Automated)

5.5 Authentication and Authorization

5.5.1 Manage Kubernetes RBAC users with Google Groups O O
for GKE (Manual)

5.6 Storage

5.6.1 Enable Customer-Managed Encryption Keys (CMEK) for | O O
GKE Persistent Disks (PD) (Manual)

5.7 Other Cluster Configurations

Page 113

Internal Only - General

CIS Benchmark Recommendation Set
Correctly
Yes | No
5.7.1 Enable Security Posture (Manual) O O
Page 114

Appendix: CIS Controls v7 IG 1 Mapped

Recommendations
Recommendation Set
Correctly
Yes | No
411 Ensure that the cluster-admin role is only used where O O
required
4.1.4 Ensure that default service accounts are not actively 0 O
used
4.2.1 Ensure that the cluster enforces Pod Security Standard O O
Baseline profile or stricter for all namespaces.
4.6.3 Apply Security Context to Pods and Containers O O
51.2 Minimize user access to Container Image repositories O O
5.2.1 Ensure GKE clusters are not running using the Compute 0O O
Engine default service account
54.2 Ensure Control Plane Authorized Networks is Enabled O O

Internal Only - General

Page 115

Appendix: CIS Controls v7 IG 2 Mapped

Recommendations
Recommendation Set
Correctly
Yes [No
411 Ensure that the cluster-admin role is only used where O O
required
412 Minimize access to secrets O O
4.1.3 Minimize wildcard use in Roles and ClusterRoles | O
41.4 Ensure that default service accounts are not actively O O
used
4.2.1 Ensure that the cluster enforces Pod Security Standard O 0
Baseline profile or stricter for all namespaces.
4.3.1 Ensure that all Namespaces have Network Policies
: O O
defined
4.6.2 Ensure that the seccomp profile is set to RuntimeDefault
: o O O
in the pod definitions
4.6.3 Apply Security Context to Pods and Containers O O
5.1.1 Ensure Image Vulnerability Scanning is enabled O O
51.2 Minimize user access to Container Image repositories O O
5.1.3 Minimize cluster access to read-only for Container Image O 0
repositories
5.1.4 Ensure only trusted container images are used | O
5.2.1 Ensure GKE clusters are not running using the Compute O O
Engine default service account
5.4.1 Enable VPC Flow Logs and Intranode Visibility O O
5.4.2 Ensure Control Plane Authorized Networks is Enabled O O
5.4.5 Ensure use of Google-managed SSL Certificates O O
5.5.1 Manage Kubernetes RBAC users with Google Groups for
O O
GKE
5.7.1 Enable Security Posture O O

Page 116

Internal Only - General

Appendix: CIS Controls v7 IG 3 Mapped

Recommendations
Recommendation Set
Correctly
Yes [No
411 Ensure that the cluster-admin role is only used where O O
required
412 Minimize access to secrets O O
4.1.3 Minimize wildcard use in Roles and ClusterRoles | O
41.4 Ensure that default service accounts are not actively O O
used
41.5 Ensure that Service Account Tokens are only mounted O 0
where necessary
4.2.1 Ensure that the cluster enforces Pod Security Standard 0O O
Baseline profile or stricter for all namespaces.
4.3.1 Ensure that all Namespaces have Network Policies
: O O
defined
46.2 Ensure that the seccomp profile is set to RuntimeDefault
: o O O
in the pod definitions
4.6.3 Apply Security Context to Pods and Containers O O
4.6.4 The default namespace should not be used O O
5.1.1 Ensure Image Vulnerability Scanning is enabled O O
5.1.2 Minimize user access to Container Image repositories O O
51.3 Minimize cluster access to read-only for Container Image O O
repositories
5.1.4 Ensure only trusted container images are used O O
5.2.1 Ensure GKE clusters are not running using the Compute O 0O
Engine default service account
5.3.1 Ensure Kubernetes Secrets are encrypted using keys 0O O
managed in Cloud KMS
5.4.1 Enable VPC Flow Logs and Intranode Visibility O O
5.4.2 Ensure Control Plane Authorized Networks is Enabled O O
5.4.5 Ensure use of Google-managed SSL Certificates O O
5.5.1 Manage Kubernetes RBAC users with Google Groups for
GKE il e

Page 117

Internal Only - General

Recommendation Set
Correctly
Yes | No
5.6.1 Enable Customer-Managed Encryption Keys (CMEK) for O O
GKE Persistent Disks (PD)
5.7.1 Enable Security Posture O O
Page 118

Internal Only - General

Appendix: CIS Controls v7 Unmapped

Recommendations
Recommendation Set
Correctly
Yes | No
4.1.8 Avoid bindings to system:anonymous O O
4.1.9 Avoid non-default bindings to system:unauthenticated O O
41.10 Avoid non-default bindings to system:authenticated O O
Page 119

Internal Only - General

Appendix: CIS Controls v8 IG 1 Mapped

Recommendations
Recommendation Set
Correctly
Yes | No
411 Ensure that the cluster-admin role is only used where O O
required
41.2 Minimize access to secrets O O
4.1.3 Minimize wildcard use in Roles and ClusterRoles O O
41.4 Ensure that default service accounts are not actively O O
used
4.1.6 Avoid use of system:masters group O O
4.1.7 Limit use of the Bind, Impersonate and Escalate 0 O
permissions in the Kubernetes cluster
4.5.1 Configure Image Provenance using O
ImagePolicyWebhook admission controller
51.2 Minimize user access to Container Image repositories O
5.1.3 Minimize cluster access to read-only for Container Image O
repositories
5.2.1 Ensure GKE clusters are not running using the Compute 0O 0O
Engine default service account
54.2 Ensure Control Plane Authorized Networks is Enabled O O
5.4.3 Ensure clusters are created with Private Endpoint 0O O
Enabled and Public Access Disabled
54.4 Ensure clusters are created with Private Nodes O O
Page 120

Internal Only - General

Appendix: CIS Controls v8 IG 2 Mapped

Recommendations
Recommendation Set
Correctly
Yes [No

411 Ensure that the cluster-admin role is only used where O O
required

412 Minimize access to secrets O O

4.1.3 Minimize wildcard use in Roles and ClusterRoles | O

41.4 Ensure that default service accounts are not actively O O
used

41.5 Ensure that Service Account Tokens are only mounted 0
where necessary

4.1.6 Avoid use of system:masters group O

41.7 Limit use of the Bind, Impersonate and Escalate 0 O
permissions in the Kubernetes cluster

4.2.1 Ensure that the cluster enforces Pod Security Standard O 0O
Baseline profile or stricter for all namespaces.

4.3.1 Ensure that all Namespaces have Network Policies O O
defined

451 Configure Image Provenance using O 0
ImagePolicyWebhook admission controller

46.2 Ensure that the seccomp profile is set to RuntimeDefault O O
in the pod definitions

4.6.4 The default namespace should not be used O O

5.1.1 Ensure Image Vulnerability Scanning is enabled O O

51.2 Minimize user access to Container Image repositories O O

51.3 Minimize cluster access to read-only for Container Image O O
repositories

5.1.4 Ensure only trusted container images are used O O

5.2.1 Ensure GKE clusters are not running using the Compute O 0
Engine default service account

5.3.1 Ensure Kubernetes Secrets are encrypted using keys 0
managed in Cloud KMS

5.4.1 Enable VPC Flow Logs and Intranode Visibility O

Page 121

Internal Only - General

Recommendation

Set
Correctly

Yes | No

5.4.2

Ensure Control Plane Authorized Networks is Enabled

5.4.3

Ensure clusters are created with Private Endpoint
Enabled and Public Access Disabled

54.4

Ensure clusters are created with Private Nodes

5.4.5

Ensure use of Google-managed SSL Certificates

5.6.1

Enable Customer-Managed Encryption Keys (CMEK) for
GKE Persistent Disks (PD)

5.7.1

Enable Security Posture

oo oo o |oO
oo oo o |0

Internal Only - General

Page 122

Appendix: CIS Controls v8 IG 3 Mapped

Recommendations
Recommendation Set
Correctly
Yes [No
411 Ensure that the cluster-admin role is only used where O O
required
412 Minimize access to secrets O O
4.1.3 Minimize wildcard use in Roles and ClusterRoles | O
41.4 Ensure that default service accounts are not actively O O
used
41.5 Ensure that Service Account Tokens are only mounted 0
where necessary
4.1.6 Avoid use of system:masters group O
41.7 Limit use of the Bind, Impersonate and Escalate
o . O O
permissions in the Kubernetes cluster
4.2.1 Ensure that the cluster enforces Pod Security Standard O 0O
Baseline profile or stricter for all namespaces.
4.3.1 Ensure that all Namespaces have Network Policies
: O O
defined
451 Configure Image Provenance using O 0
ImagePolicyWebhook admission controller
46.2 Ensure that the seccomp profile is set to RuntimeDefault
: o O O
in the pod definitions
4.6.4 The default namespace should not be used O O
5.1.1 Ensure Image Vulnerability Scanning is enabled O O
51.2 Minimize user access to Container Image repositories O O
51.3 Minimize cluster access to read-only for Container Image O O
repositories
5.1.4 Ensure only trusted container images are used O O
5.2.1 Ensure GKE clusters are not running using the Compute O 0
Engine default service account
5.3.1 Ensure Kubernetes Secrets are encrypted using keys 0
managed in Cloud KMS
5.4.1 Enable VPC Flow Logs and Intranode Visibility O
Page 123

Internal Only - General

Internal Only - General

Recommendation Set
Correctly
Yes | No
5.4.2 Ensure Control Plane Authorized Networks is Enabled | O
5.4.3 Ensure clusters are created with Private Endpoint O O
Enabled and Public Access Disabled
54.4 Ensure clusters are created with Private Nodes O O
5.4.5 Ensure use of Google-managed SSL Certificates O O
5.5.1 Manage Kubernetes RBAC users with Google Groups for O O
GKE
5.6.1 Enable Customer-Managed Encryption Keys (CMEK) for O O
GKE Persistent Disks (PD)
5.7.1 Enable Security Posture O O
Page 124

Appendix: CIS Controls v8 Unmapped

Recommendations
Recommendation Set
Correctly
Yes | No
4.1.8 Avoid bindings to system:anonymous O O
4.1.9 Avoid non-default bindings to system:unauthenticated O O
41.10 Avoid non-default bindings to system:authenticated O O
Page 125

Internal Only - General

Appendix: Change History

Date

Version

Changes for this version

Internal Only - General

Page 126

	Terms of Use
	Table of Contents
	Overview
	Intended Audience
	Relevant links

	Consensus Guidance
	Typographical Conventions

	Recommendation Definitions
	Title
	Assessment Status
	Automated
	Manual

	Profile
	Description
	Rationale Statement
	Impact Statement
	Audit Procedure
	Remediation Procedure
	Default Value
	References
	CIS Critical Security Controls® (CIS Controls®)
	Additional Information
	Profile Definitions
	Acknowledgements

	Recommendations
	1 Control Plane Components
	2 Control Plane Configuration
	3 Worker Nodes
	4 Policies
	4.1 RBAC and Service Accounts
	4.1.1 Ensure that the cluster-admin role is only used where required (Automated)
	4.1.2 Minimize access to secrets (Automated)
	4.1.3 Minimize wildcard use in Roles and ClusterRoles (Automated)
	4.1.4 Ensure that default service accounts are not actively used (Automated)
	4.1.5 Ensure that Service Account Tokens are only mounted where necessary (Automated)
	4.1.6 Avoid use of system:masters group (Automated)
	4.1.7 Limit use of the Bind, Impersonate and Escalate permissions in the Kubernetes cluster (Manual)
	4.1.8 Avoid bindings to system:anonymous (Automated)
	4.1.9 Avoid non-default bindings to system:unauthenticated (Automated)
	4.1.10 Avoid non-default bindings to system:authenticated (Automated)

	4.2 Pod Security Standards
	4.2.1 Ensure that the cluster enforces Pod Security Standard Baseline profile or stricter for all namespaces. (Manual)

	4.3 Network Policies and CNI
	4.3.1 Ensure that all Namespaces have Network Policies defined (Automated)

	4.4 Secrets Management
	4.4.1 Consider external secret storage (Manual)

	4.5 Extensible Admission Control
	4.5.1 Configure Image Provenance using ImagePolicyWebhook admission controller (Manual)

	4.6 General Policies
	4.6.1 Create administrative boundaries between resources using namespaces (Manual)
	4.6.2 Ensure that the seccomp profile is set to RuntimeDefault in the pod definitions (Automated)
	4.6.3 Apply Security Context to Pods and Containers (Manual)
	4.6.4 The default namespace should not be used (Automated)

	5 Managed services
	5.1 Image Registry and Image Scanning
	5.1.1 Ensure Image Vulnerability Scanning is enabled (Automated)
	For Images Hosted in GCR:
	Using Google Cloud Console:
	Using Command Line:

	For Images Hosted in AR:
	Using Google Cloud Console:
	Using Command Line:

	For Images Hosted in GCR:
	Using Google Cloud Console
	Using Command Line

	For Images Hosted in AR:
	Using Google Cloud Console
	Using Command Line
	5.1.2 Minimize user access to Container Image repositories (Manual)

	For Images Hosted in AR:
	For Images Hosted in GCR:
	For Images Hosted in AR:
	For Images Hosted in GCR:
	5.1.3 Minimize cluster access to read-only for Container Image repositories (Manual)

	For Images Hosted in AR:
	For Images Hosted in GCR:
	For Images Hosted in AR:
	For Images Hosted in GCR:
	5.1.4 Ensure only trusted container images are used (Automated)

	5.2 Identity and Access Management (IAM)
	5.2.1 Ensure GKE clusters are not running using the Compute Engine default service account (Automated)

	5.3 Cloud Key Management Service (Cloud KMS)
	5.3.1 Ensure Kubernetes Secrets are encrypted using keys managed in Cloud KMS (Automated)

	5.4 Cluster Networking
	5.4.1 Enable VPC Flow Logs and Intranode Visibility (Automated)
	5.4.2 Ensure Control Plane Authorized Networks is Enabled (Automated)
	5.4.3 Ensure clusters are created with Private Endpoint Enabled and Public Access Disabled (Automated)
	5.4.4 Ensure clusters are created with Private Nodes (Automated)
	5.4.5 Ensure use of Google-managed SSL Certificates (Automated)

	5.5 Authentication and Authorization
	5.5.1 Manage Kubernetes RBAC users with Google Groups for GKE (Manual)

	5.6 Storage
	5.6.1 Enable Customer-Managed Encryption Keys (CMEK) for GKE Persistent Disks (PD) (Manual)

	5.7 Other Cluster Configurations
	5.7.1 Enable Security Posture (Manual)

	Appendix: Summary Table
	Appendix: CIS Controls v7 IG 1 Mapped Recommendations
	Appendix: CIS Controls v7 IG 2 Mapped Recommendations
	Appendix: CIS Controls v7 IG 3 Mapped Recommendations
	Appendix: CIS Controls v7 Unmapped Recommendations
	Appendix: CIS Controls v8 IG 1 Mapped Recommendations
	Appendix: CIS Controls v8 IG 2 Mapped Recommendations
	Appendix: CIS Controls v8 IG 3 Mapped Recommendations
	Appendix: CIS Controls v8 Unmapped Recommendations
	Appendix: Change History

