

Internal Only - General

CIS Amazon Elastic
Kubernetes Service (EKS)
Benchmark

v1.6.0 - 12-23-2024

Page 1

Internal Only - General

Terms of Use
Please see the below link for our current terms of use:

https://www.cisecurity.org/cis-securesuite/cis-securesuite-membership-terms-of-use/

For information on referencing and/or citing CIS Benchmarks in 3rd party documentation
(including using portions of Benchmark Recommendations) please contact CIS Legal
(CISLegal@cisecurity.org) and request guidance on copyright usage.

NOTE: It is NEVER acceptable to host a CIS Benchmark in ANY format (PDF, etc.)
on a 3rd party (non-CIS owned) site.

https://www.cisecurity.org/cis-securesuite/cis-securesuite-membership-terms-of-use/
mailto:CISLegal@cisecurity.org

Page 2

Internal Only - General

Table of Contents
Terms of Use ... 1

Table of Contents ... 2

Overview .. 5

Important Usage Information .. 5
Key Stakeholders.. 5
Apply the Correct Version of a Benchmark ... 6
Exceptions ... 6
Remediation .. 7
Summary.. 7

Target Technology Details .. 8

Intended Audience ... 8

Consensus Guidance ... 9

Typographical Conventions .. 10

Recommendation Definitions ... 11

Title ... 11

Assessment Status .. 11
Automated ... 11
Manual.. 11

Profile ... 11

Description .. 11

Rationale Statement ... 11

Impact Statement.. 12

Audit Procedure .. 12

Remediation Procedure ... 12

Default Value ... 12

References .. 12

CIS Critical Security Controls® (CIS Controls®) .. 12

Additional Information ... 12

Profile Definitions ... 13

Acknowledgements .. 14

Recommendations ... 15

1 Control Plane Components .. 15

2 Control Plane Configuration .. 15
2.1 Logging .. 16

2.1.1 Enable audit Logs (Automated) .. 17
2.1.2 Ensure audit logs are collected and managed (Manual).. 20

Page 3

Internal Only - General

3 Worker Nodes .. 22
3.1 Worker Node Configuration Files ... 23

3.1.1 Ensure that the kubeconfig file permissions are set to 644 or more restrictive
(Automated) ... 24
3.1.2 Ensure that the kubelet kubeconfig file ownership is set to root:root (Automated).......... 27
3.1.3 Ensure that the kubelet configuration file has permissions set to 644 or more restrictive
(Automated) ... 30
3.1.4 Ensure that the kubelet configuration file ownership is set to root:root (Automated) 33

3.2 Kubelet ... 36
3.2.1 Ensure that the Anonymous Auth is Not Enabled (Automated) 37
3.2.2 Ensure that the --authorization-mode argument is not set to AlwaysAllow (Automated) 41
3.2.3 Ensure that a Client CA File is Configured (Automated).. 45
3.2.4 Ensure that the --read-only-port is disabled (Automated) .. 48
3.2.5 Ensure that the --streaming-connection-idle-timeout argument is not set to 0
(Automated) ... 50
3.2.6 Ensure that the --make-iptables-util-chains argument is set to true (Automated) 53
3.2.7 Ensure that the --eventRecordQPS argument is set to 0 or a level which ensures
appropriate event capture (Automated)... 56
3.2.8 Ensure that the --rotate-certificates argument is not present or is set to true (Automated)
 ... 58
3.2.9 Ensure that the RotateKubeletServerCertificate argument is set to true (Automated) 60

4 Policies ... 63
4.1 RBAC and Service Accounts... 64

4.1.1 Ensure that the cluster-admin role is only used where required (Automated) 65
4.1.2 Minimize access to secrets (Automated) ... 67
4.1.3 Minimize wildcard use in Roles and ClusterRoles (Automated) 69
4.1.4 Minimize access to create pods (Automated) .. 71
4.1.5 Ensure that default service accounts are not actively used. (Automated) 73
4.1.6 Ensure that Service Account Tokens are only mounted where necessary (Automated) 75
4.1.7 Cluster Access Manager API to streamline and enhance the management of access
controls within EKS clusters (Automated) ... 77
4.1.8 Limit use of the Bind, Impersonate and Escalate permissions in the Kubernetes cluster
(Manual) ... 81

4.2 Pod Security Standards ... 83
4.2.1 Minimize the admission of privileged containers (Automated) ... 84
4.2.2 Minimize the admission of containers wishing to share the host process ID namespace
(Automated) ... 87
4.2.3 Minimize the admission of containers wishing to share the host IPC namespace
(Automated) ... 89
4.2.4 Minimize the admission of containers wishing to share the host network namespace
(Automated) ... 91
4.2.5 Minimize the admission of containers with allowPrivilegeEscalation (Automated) 93

4.3 CNI Plugin .. 96
4.3.1 Ensure CNI plugin supports network policies. (Manual) .. 97
4.3.2 Ensure that all Namespaces have Network Policies defined (Automated) 99

4.4 Secrets Management .. 101
4.4.1 Prefer using secrets as files over secrets as environment variables (Automated) 102
4.4.2 Consider external secret storage (Manual) .. 104

4.5 General Policies .. 106
4.5.1 Create administrative boundaries between resources using namespaces (Manual) 107
4.5.2 The default namespace should not be used (Automated) ... 109

5 Managed services ... 110
5.1 Image Registry and Image Scanning.. 111

5.1.1 Ensure Image Vulnerability Scanning using Amazon ECR image scanning or a third
party provider (Automated) .. 112

Page 4

Internal Only - General

5.1.2 Minimize user access to Amazon ECR (Manual) ... 115
5.1.3 Minimize cluster access to read-only for Amazon ECR (Manual) 118
5.1.4 Minimize Container Registries to only those approved (Manual) 120

5.2 Identity and Access Management (IAM)... 122
5.2.1 Prefer using dedicated EKS Service Accounts (Automated) ... 123

5.3 AWS EKS Key Management Service .. 125
5.3.1 Ensure Kubernetes Secrets are encrypted using Customer Master Keys (CMKs)
managed in AWS KMS (Manual) .. 126

5.4 Cluster Networking ... 128
5.4.1 Restrict Access to the Control Plane Endpoint (Automated) ... 129
5.4.2 Ensure clusters are created with Private Endpoint Enabled and Public Access Disabled
(Automated) ... 132
5.4.3 Ensure clusters are created with Private Nodes (Automated) 134
5.4.4 Ensure Network Policy is Enabled and set as appropriate (Automated) 136
5.4.5 Encrypt traffic to HTTPS load balancers with TLS certificates (Manual) 138

5.5 Authentication and Authorization ... 139
5.5.1 Manage Kubernetes RBAC users with AWS IAM Authenticator for Kubernetes or
Upgrade to AWS CLI v1.16.156 or greater (Manual) .. 140

Appendix: Summary Table .. 142

Appendix: CIS Controls v7 IG 1 Mapped Recommendations 147

Appendix: CIS Controls v7 IG 2 Mapped Recommendations 149

Appendix: CIS Controls v7 IG 3 Mapped Recommendations 152

Appendix: CIS Controls v7 Unmapped Recommendations 155

Appendix: CIS Controls v8 IG 1 Mapped Recommendations 156

Appendix: CIS Controls v8 IG 2 Mapped Recommendations 158

Appendix: CIS Controls v8 IG 3 Mapped Recommendations 161

Appendix: CIS Controls v8 Unmapped Recommendations 164

Appendix: Change History .. 165

Page 5

Internal Only - General

Overview
All CIS Benchmarks™ (Benchmarks) focus on technical configuration settings used to
maintain and/or increase the security of the addressed technology, and they should be
used in conjunction with other essential cyber hygiene tasks like:

• Monitoring the base operating system and applications for vulnerabilities and
quickly updating with the latest security patches.

• End-point protection (Antivirus software, Endpoint Detection and Response
(EDR), etc.).

• Logging and monitoring user and system activity.

In the end, the Benchmarks are designed to be a key component of a comprehensive
cybersecurity program.

Important Usage Information

All Benchmarks are available free for non-commercial use from the CIS Website. They
can be used to manually assess and remediate systems and applications. In lieu of
manual assessment and remediation, there are several tools available to assist with
assessment:

• CIS Configuration Assessment Tool (CIS-CAT® Pro Assessor)

• CIS Benchmarks™ Certified 3rd Party Tooling

These tools make the hardening process much more scalable for large numbers of
systems and applications.

NOTE: Some tooling focuses only on the Benchmark Recommendations that can
be fully automated (skipping ones marked Manual). It is important that ALL
Recommendations (Automated and Manual) be addressed since all are
important for properly securing systems and are typically in scope for
audits.

Key Stakeholders

Cybersecurity is a collaborative effort, and cross functional cooperation is imperative
within an organization to discuss, test, and deploy Benchmarks in an effective and
efficient way. The Benchmarks are developed to be best practice configuration
guidelines applicable to a wide range of use cases. In some organizations, exceptions
to specific Recommendations will be needed, and this team should work to prioritize the
problematic Recommendations based on several factors like risk, time, cost, and labor.
These exceptions should be properly categorized and documented for auditing
purposes.

https://www.cisecurity.org/cis-benchmarks
https://www.cisecurity.org/cybersecurity-tools/cis-cat-pro
https://www.cisecurity.org/partners-vendor

Page 6

Internal Only - General

Apply the Correct Version of a Benchmark

Benchmarks are developed and tested for a specific set of products and versions and
applying an incorrect Benchmark to a system can cause the resulting pass/fail score to
be incorrect. This is due to the assessment of settings that do not apply to the target
systems. To assure the correct Benchmark is being assessed:

• Deploy the Benchmark applicable to the way settings are managed in the
environment: An example of this is the Microsoft Windows family of
Benchmarks, which have separate Benchmarks for Group Policy, Intune, and
Stand-alone systems based upon how system management is deployed.
Applying the wrong Benchmark in this case will give invalid results.

• Use the most recent version of a Benchmark: This is true for all Benchmarks,
but especially true for cloud technologies. Cloud technologies change frequently
and using an older version of a Benchmark may have invalid methods for
auditing and remediation.

Exceptions

The guidance items in the Benchmarks are called recommendations and not
requirements, and exceptions to some of them are expected and acceptable. The
Benchmarks strive to be a secure baseline, or starting point, for a specific technology,
with known issues identified during Benchmark development are documented in the
Impact section of each Recommendation. In addition, organizational, system specific
requirements, or local site policy may require changes as well, or an exception to a
Recommendation or group of Recommendations (e.g. A Benchmark could Recommend
that a Web server not be installed on the system, but if a system's primary purpose is to
function as a Webserver, there should be a documented exception to this
Recommendation for that specific server).

In the end, exceptions to some Benchmark Recommendations are common and
acceptable, and should be handled as follows:

• The reasons for the exception should be reviewed cross-functionally and be well
documented for audit purposes.

• A plan should be developed for mitigating, or eliminating, the exception in the
future, if applicable.

• If the organization decides to accept the risk of this exception (not work toward
mitigation or elimination), this should be documented for audit purposes.

It is the responsibility of the organization to determine their overall security policy, and
which settings are applicable to their unique needs based on the overall risk profile for
the organization.

Page 7

Internal Only - General

Remediation

CIS has developed Build Kits for many technologies to assist in the automation of
hardening systems. Build Kits are designed to correspond to Benchmark's
“Remediation” section, which provides the manual remediation steps necessary to make
that Recommendation compliant to the Benchmark.

When remediating systems (changing configuration settings on
deployed systems as per the Benchmark's Recommendations),

please approach this with caution and test thoroughly.

The following is a reasonable remediation approach to follow:

• CIS Build Kits, or internally developed remediation methods should never be
applied to production systems without proper testing.

• Proper testing consists of the following:

o Understand the configuration (including installed applications) of the targeted
systems. Various parts of the organization may need different configurations
(e.g., software developers vs standard office workers).

o Read the Impact section of the given Recommendation to help determine if
there might be an issue with the targeted systems.

o Test the configuration changes with representative lab system(s). If issues
arise during testing, they can be resolved prior to deploying to any production
systems.

o When testing is complete, initially deploy to a small sub-set of production
systems and monitor closely for issues. If there are issues, they can be
resolved prior to deploying more broadly.

o When the initial deployment above is completes successfully, iteratively
deploy to additional systems and monitor closely for issues. Repeat this
process until the full deployment is complete.

Summary

Using the Benchmarks Certified tools, working as a team with key stakeholders, being
selective with exceptions, and being careful with remediation deployment, it is possible
to harden large numbers of deployed systems in a cost effective, efficient, and safe
manner.

NOTE: As previously stated, the PDF versions of the CIS Benchmarks™ are
available for free, non-commercial use on the CIS Website. All other formats
of the CIS Benchmarks™ (MS Word, Excel, and Build Kits) are available for
CIS SecureSuite® members.

CIS-CAT® Pro is also available to CIS SecureSuite® members.

https://www.cisecurity.org/cis-securesuite/cis-securesuite-build-kit-content
https://www.cisecurity.org/cis-benchmarks
https://www.cisecurity.org/cis-securesuite/cis-securesuite-build-kit-content
https://www.cisecurity.org/cis-securesuite
https://www.cisecurity.org/cis-securesuite

Page 8

Internal Only - General

Target Technology Details

This document provides prescriptive guidance for running Amazon Elastic Kubernetes
Service (EKS) following recommended security controls. This benchmark only includes
controls which can be modified by an end user of Amazon EKS.
To obtain the latest version of this guide, please visit www.cisecurity.org. If you have
questions, comments, or have identified ways to improve this guide, please write us at
support@cisecurity.org.

Intended Audience

This document is intended for cluster administrators, security specialists, auditors, and
any personnel who plan to develop, deploy, assess, or secure solutions that incorporate
Amazon EKS using managed and self-managed nodes.
Customers using Amazon EKS on AWS Fargate are not responsible for node
management. Hence, this document is not scoped for Amazon EKS on AWS Fargate
customers.

http://www.cisecurity.org/
mailto:support@cisecurity.org

Page 9

Internal Only - General

Consensus Guidance

This CIS Benchmark™ was created using a consensus review process comprised of a
global community of subject matter experts. The process combines real world
experience with data-based information to create technology specific guidance to assist
users to secure their environments. Consensus participants provide perspective from a
diverse set of backgrounds including consulting, software development, audit and
compliance, security research, operations, government, and legal.

Each CIS Benchmark undergoes two phases of consensus review. The first phase
occurs during initial Benchmark development. During this phase, subject matter experts
convene to discuss, create, and test working drafts of the Benchmark. This discussion
occurs until consensus has been reached on Benchmark recommendations. The
second phase begins after the Benchmark has been published. During this phase, all
feedback provided by the Internet community is reviewed by the consensus team for
incorporation in the Benchmark. If you are interested in participating in the consensus
process, please visit https://workbench.cisecurity.org/.

https://workbench.cisecurity.org/

Page 10

Internal Only - General

Typographical Conventions

The following typographical conventions are used throughout this guide:

Convention Meaning

Stylized Monospace font

Used for blocks of code, command, and
script examples. Text should be interpreted
exactly as presented.

Monospace font
Used for inline code, commands, UI/Menu
selections or examples. Text should be
interpreted exactly as presented.

<Monospace font in brackets>
Text set in angle brackets denote a variable
requiring substitution for a real value.

Italic font

Used to reference other relevant settings,
CIS Benchmarks and/or Benchmark
Communities. Also, used to denote the title
of a book, article, or other publication.

Bold font

Additional information or caveats things like
Notes, Warnings, or Cautions (usually just
the word itself and the rest of the text
normal).

Page 11

Internal Only - General

Recommendation Definitions
The following defines the various components included in a CIS recommendation as
applicable. If any of the components are not applicable it will be noted, or the
component will not be included in the recommendation.

Title

Concise description for the recommendation's intended configuration.

Assessment Status

An assessment status is included for every recommendation. The assessment status
indicates whether the given recommendation can be automated or requires manual
steps to implement. Both statuses are equally important and are determined and
supported as defined below:

Automated

Represents recommendations for which assessment of a technical control can be fully
automated and validated to a pass/fail state. Recommendations will include the
necessary information to implement automation.

Manual

Represents recommendations for which assessment of a technical control cannot be
fully automated and requires all or some manual steps to validate that the configured
state is set as expected. The expected state can vary depending on the environment.

Profile

A collection of recommendations for securing a technology or a supporting platform.
Most benchmarks include at least a Level 1 and Level 2 Profile. Level 2 extends Level 1
recommendations and is not a standalone profile. The Profile Definitions section in the
benchmark provides the definitions as they pertain to the recommendations included for
the technology.

Description

Detailed information pertaining to the setting with which the recommendation is
concerned. In some cases, the description will include the recommended value.

Rationale Statement

Detailed reasoning for the recommendation to provide the user a clear and concise
understanding on the importance of the recommendation.

Page 12

Internal Only - General

Impact Statement

Any security, functionality, or operational consequences that can result from following
the recommendation.

Audit Procedure

Systematic instructions for determining if the target system complies with the
recommendation.

Remediation Procedure

Systematic instructions for applying recommendations to the target system to bring it
into compliance according to the recommendation.

Default Value

Default value for the given setting in this recommendation, if known. If not known, either
not configured or not defined will be applied.

References

Additional documentation relative to the recommendation.

CIS Critical Security Controls® (CIS Controls®)

The mapping between a recommendation and the CIS Controls is organized by CIS
Controls version, Safeguard, and Implementation Group (IG). The Benchmark in its
entirety addresses the CIS Controls safeguards of (v7) “5.1 - Establish Secure
Configurations” and (v8) '4.1 - Establish and Maintain a Secure Configuration Process”
so individual recommendations will not be mapped to these safeguards.

Additional Information

Supplementary information that does not correspond to any other field but may be
useful to the user.

Page 13

Internal Only - General

Profile Definitions

The following configuration profiles are defined by this Benchmark:

• Level 1

Level 1 Configuration Profile

• Level 2

Extends Level 1

Page 14

Internal Only - General

Acknowledgements

This Benchmark exemplifies the great things a community of users, vendors, and
subject matter experts can accomplish through consensus collaboration. The CIS
community thanks the entire consensus team with special recognition to the following
individuals who contributed greatly to the creation of this guide:

Thanks to Authors: Paavan Mistry and Randall Mowen
with special thanks to contributors: Rory MCcune and Tony Wilwerding

Authors:

Paavan Mistry
Randall Mowen

Editor:
Randall Mowen

Contributors
Mark Larinde
Rory MCcune
Tony Wilwerding
James Stocks
Daniel Burns
Joe Bowbeer

Page 15

Internal Only - General

Recommendations

1 Control Plane Components

Security is a shared responsibility between AWS and the Amazon EKS customer. The
shared responsibility model describes this as security of the cloud and security in the
cloud:

Security of the cloud – AWS is responsible for protecting the infrastructure that runs
AWS services in the AWS Cloud. For Amazon EKS, AWS is responsible for the
Kubernetes control plane, which includes the control plane nodes and etcd database.
Third-party auditors regularly test and verify the effectiveness of our security as part of
the AWS compliance programs. To learn about the compliance programs that apply to
Amazon EKS, see AWS Services in Scope by Compliance Program.

Security in the cloud – Your responsibility includes the following areas.

• The security configuration of the data plane, including the configuration of the
security groups that allow traffic to pass from the Amazon EKS control plane into
the customer VPC

• The configuration of the worker nodes and the containers themselves
• The worker node guest operating system (including updates and security

patches)
o Amazon EKS follows the shared responsibility model for CVEs and

security patches on managed node groups. Because managed nodes run
the Amazon EKS-optimized AMIs, Amazon EKS is responsible for building
patched versions of these AMIs when bugs or issues are reported and we
are able to publish a fix. However, customers are responsible for
deploying these patched AMI versions to your managed node groups.

• Other associated application software:
o Setting up and managing network controls, such as firewall rules
o Managing platform-level identity and access management, either with or in

addition to IAM
• The sensitivity of your data, your company’s requirements, and applicable laws

and regulations

AWS is responsible for securing the control plane, though you might be able to
configure certain options based on your requirements. Section 2 of this Benchmark
addresses these configurations.

2 Control Plane Configuration

This section contains recommendations for Amazon EKS control plane logging
configuration. Customers are able to configure logging for control plane in Amazon
EKS.

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/

Page 16

Internal Only - General

2.1 Logging

Page 17

Internal Only - General

2.1.1 Enable audit Logs (Automated)

Profile Applicability:

• Level 1

Description:

Control plane logs provide visibility into operation of the EKS Control plane component
systems. The API server audit logs record all accepted and rejected requests in the
cluster. When enabled via EKS configuration the control plane logs for a cluster are
exported to a CloudWatch Log Group for persistence.

Rationale:

Audit logs enable visibility into all API server requests from authentic and anonymous
sources. Stored log data can be analyzed manually or with tools to identify and
understand anomalous or negative activity and lead to intelligent remediations.

Impact:

Enabling control plane logs, including API server audit logs for Amazon EKS clusters,
significantly strengthens our security posture by providing detailed visibility into all API
requests, thereby reducing our attack surface. By exporting these logs to a CloudWatch
Log Group, we ensure persistent storage and facilitate both manual and automated
analysis to quickly identify and remediate anomalous activities. While this configuration
might slightly impact usability or performance due to the overhead of logging, the
enhanced security and compliance benefits far outweigh these drawbacks, making it a
critical component of our security strategy.

Audit:

From Console:

1. For each EKS Cluster in each region;
2. Go to 'Amazon EKS' > 'Clusters' > 'CLUSTER_NAME' > 'Configuration' >

'Logging'.
3. This will show the control plane logging configuration:

API server: Enabled / Disabled
Audit: Enabled / Disabled
Authenticator: Enabled / Disabled
Controller manager: Enabled / Disabled
Scheduler: Enabled / Disabled

4. Ensure that all options are set to 'Enabled'.

From CLI:

Page 18

Internal Only - General

For each EKS Cluster in each region;
export CLUSTER_NAME=<your cluster name>
export REGION_CODE=<your region_code>
aws eks describe-cluster --name ${CLUSTER_NAME} --region ${REGION_CODE} --
query 'cluster.logging.clusterLogging'

Remediation:

From Console:

1. For each EKS Cluster in each region;
2. Go to 'Amazon EKS' > 'Clusters' > '' > 'Configuration' > 'Logging'.
3. Click 'Manage logging'.
4. Ensure that all options are toggled to 'Enabled'.

API server: Enabled
Audit: Enabled
Authenticator: Enabled
Controller manager: Enabled
Scheduler: Enabled

5. Click 'Save Changes'.

From CLI:
For each EKS Cluster in each region;
aws eks update-cluster-config \
 --region '${REGION_CODE}' \
 --name '${CLUSTER_NAME}' \
 --logging
'{"clusterLogging":[{"types":["api","audit","authenticator","controllerManage
r","scheduler"],"enabled":true}]}'

Default Value:

Control Plane Logging is disabled by default.

API server: Disabled
Audit: Disabled
Authenticator: Disabled
Controller manager: Disabled
Scheduler: Disabled

References:

1. https://kubernetes.io/docs/tasks/debug-application-cluster/audit/
2. https://aws.github.io/aws-eks-best-practices/detective/
3. https://docs.aws.amazon.com/eks/latest/userguide/control-plane-logs.html
4. https://docs.aws.amazon.com/eks/latest/userguide/logging-using-cloudtrail.html

https://kubernetes.io/docs/tasks/debug-application-cluster/audit/
https://aws.github.io/aws-eks-best-practices/detective/
https://docs.aws.amazon.com/eks/latest/userguide/control-plane-logs.html
https://docs.aws.amazon.com/eks/latest/userguide/logging-using-cloudtrail.html

Page 19

Internal Only - General

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

8.1 Establish and Maintain an Audit Log Management
Process
 Establish and maintain an audit log management process that defines the
enterprise’s logging requirements. At a minimum, address the collection, review,
and retention of audit logs for enterprise assets. Review and update documentation
annually, or when significant enterprise changes occur that could impact this
Safeguard.

● ● ●

v8
8.2 Collect Audit Logs
 Collect audit logs. Ensure that logging, per the enterprise’s audit log
management process, has been enabled across enterprise assets.

● ● ●

v7
6.2 Activate audit logging
 Ensure that local logging has been enabled on all systems and networking
devices.

● ● ●

v7
6.3 Enable Detailed Logging
 Enable system logging to include detailed information such as an event source,
date, user, timestamp, source addresses, destination addresses, and other useful
elements.

 ● ●

Page 20

Internal Only - General

2.1.2 Ensure audit logs are collected and managed (Manual)

Profile Applicability:

• Level 1

Description:

Ensure that audit logs are collected and managed in accordance with the enterprise’s
audit log management process across all Kubernetes components.

Rationale:

Audit logs provide visibility into the activities occurring within a Kubernetes cluster,
enabling the detection and investigation of security incidents and policy violations.
Proper collection and management of audit logs are essential for maintaining an audit
trail and ensuring compliance with security policies.

Impact:

Implementing comprehensive audit logging may require additional storage and
processing resources. Care must be taken to ensure that logs are properly secured and
managed to avoid any potential security risks associated with log data.

Audit:

1. Verify audit logging is enabled for Kubernetes components:

kubectl get --raw /api/v1/nodes/${NODE_NAME}/proxy/configz | jq
'.kubeletConfig.auditPolicy'

2. Ensure the audit logs are being collected and sent to a centralized logging
system:

kubectl get --raw /api/v1/nodes/${NODE_NAME}/proxy/stats/summary | jq
'.auditLogs'

3. Verify that the audit logs are being monitored and managed according to the
enterprise’s audit log management process.

Remediation:

1. Create or update the audit-policy.yaml to specify the audit logging configuration:

Page 21

Internal Only - General

apiVersion: audit.k8s.io/v1
kind: Policy
rules:
 - level: Metadata
 resources:
 - group: ""
 resources: ["pods"]

2. Apply the audit policy configuration to the cluster:

kubectl apply -f <path-to-audit-policy>.yaml

3. Ensure audit logs are forwarded to a centralized logging system like CloudWatch,
Elasticsearch, or another log management solution:

kubectl create configmap cluster-audit-policy --from-file=audit-policy.yaml -
n kube-system
kubectl apply -f - <<EOF
apiVersion: v1
kind: Pod
metadata:
 name: audit-logging
 namespace: kube-system
spec:
 containers:
 - name: audit-log-forwarder
 image: my-log-forwarder-image
 volumeMounts:
 - mountPath: /etc/kubernetes/audit
 name: audit-config
 volumes:
 - name: audit-config
 configMap:
 name: cluster-audit-policy
EOF

Default Value:

By default, Kubernetes does not enable detailed audit logging. Configuration is required
to enable and manage audit logs.

References:

1. https://kubernetes.io/docs/tasks/debug-application-cluster/audit/
2. https://kubernetes.io/docs/tasks/debug-application-cluster/audit/#audit-policy

https://kubernetes.io/docs/tasks/debug-application-cluster/audit/
https://kubernetes.io/docs/tasks/debug-application-cluster/audit/#audit-policy

Page 22

Internal Only - General

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

8.1 Establish and Maintain an Audit Log Management
Process
 Establish and maintain an audit log management process that defines the
enterprise’s logging requirements. At a minimum, address the collection, review,
and retention of audit logs for enterprise assets. Review and update documentation
annually, or when significant enterprise changes occur that could impact this
Safeguard.

● ● ●

v8
8.2 Collect Audit Logs
 Collect audit logs. Ensure that logging, per the enterprise’s audit log
management process, has been enabled across enterprise assets.

● ● ●

v7
6.2 Activate audit logging
 Ensure that local logging has been enabled on all systems and networking
devices.

● ● ●

v7
6.3 Enable Detailed Logging
 Enable system logging to include detailed information such as an event source,
date, user, timestamp, source addresses, destination addresses, and other useful
elements.

 ● ●

3 Worker Nodes

This section consists of security recommendations for the components that run on
Amazon EKS worker nodes.

Page 23

Internal Only - General

3.1 Worker Node Configuration Files

This section covers recommendations for configuration files on Amazon EKS worker
nodes.

Page 24

Internal Only - General

3.1.1 Ensure that the kubeconfig file permissions are set to 644 or

more restrictive (Automated)

Profile Applicability:

• Level 1

Description:

If kubelet is running, and if it is configured by a kubeconfig file, ensure that the proxy
kubeconfig file has permissions of 644 or more restrictive.

Rationale:

The kubelet kubeconfig file controls various parameters of the kubelet service in the
worker node. You should restrict its file permissions to maintain the integrity of the file.
The file should be writable by only the administrators on the system.

It is possible to run kubelet with the kubeconfig parameters configured as a
Kubernetes ConfigMap instead of a file. In this case, there is no proxy kubeconfig file.

Impact:

Ensuring that the kubeconfig file permissions are set to 644 or more restrictive
significantly strengthens the security posture of the Kubernetes environment by
preventing unauthorized modifications. This restricts write access to the kubeconfig file,
ensuring only administrators can alter crucial kubelet configurations, thereby reducing
the risk of malicious alterations that could compromise the cluster's integrity.

However, this configuration may slightly impact usability, as it limits the ability for non-
administrative users to make quick adjustments to the kubelet settings. Administrators
will need to balance security needs with operational flexibility, potentially requiring
adjustments to workflows for managing kubelet configurations.

Audit:

Method 1
SSH to the worker nodes
To check to see if the Kubelet Service is running:

sudo systemctl status kubelet

The output should return Active: active (running) since..
Run the following command on each node to find the appropriate kubeconfig file:

ps -ef | grep kubelet

The output of the above command should return something similar to --kubeconfig
/var/lib/kubelet/kubeconfig which is the location of the kubeconfig file.
Run this command to obtain the kubeconfig file permissions:

Page 25

Internal Only - General

stat -c %a /var/lib/kubelet/kubeconfig

The output of the above command gives you the kubeconfig file's permissions.
Verify that if a file is specified and it exists, the permissions are 644 or more restrictive.
Method 2
Create and Run a Privileged Pod.
You will need to run a pod that is privileged enough to access the host's file system.
This can be achieved by deploying a pod that uses the hostPath volume to mount the
node's file system into the pod.
Here's an example of a simple pod definition that mounts the root of the host to /host
within the pod:

apiVersion: v1
kind: Pod
metadata:
 name: file-check
spec:
 volumes:
 - name: host-root
 hostPath:
 path: /
 type: Directory
 containers:
 - name: nsenter
 image: busybox
 command: ["sleep", "3600"]
 volumeMounts:
 - name: host-root
 mountPath: /host
 securityContext:
 privileged: true

Save this to a file (e.g., file-check-pod.yaml) and create the pod:

kubectl apply -f file-check-pod.yaml

Once the pod is running, you can exec into it to check file permissions on the node:

kubectl exec -it file-check -- sh

Now you are in a shell inside the pod, but you can access the node's file system through
the /host directory and check the permission level of the file:

ls -l /host/var/lib/kubelet/kubeconfig

Verify that if a file is specified and it exists, the permissions are 644 or more restrictive.

Remediation:

Run the below command (based on the file location on your system) on the each worker
node. For example,

Page 26

Internal Only - General

chmod 644 <kubeconfig file>

Default Value:

See the AWS EKS documentation for the default value.

References:

1. https://kubernetes.io/docs/admin/kube-proxy/

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8
3.3 Configure Data Access Control Lists
 Configure data access control lists based on a user’s need to know. Apply data
access control lists, also known as access permissions, to local and remote file
systems, databases, and applications.

● ● ●

v7

5.2 Maintain Secure Images
 Maintain secure images or templates for all systems in the enterprise based on
the organization's approved configuration standards. Any new system deployment
or existing system that becomes compromised should be imaged using one of
those images or templates.

 ● ●

https://kubernetes.io/docs/admin/kube-proxy/

Page 27

Internal Only - General

3.1.2 Ensure that the kubelet kubeconfig file ownership is set to

root:root (Automated)

Profile Applicability:

• Level 1

Description:

If kubelet is running, ensure that the file ownership of its kubeconfig file is set to
root:root.

Rationale:

The kubeconfig file for kubelet controls various parameters for the kubelet service in
the worker node. You should set its file ownership to maintain the integrity of the file.
The file should be owned by root:root.

Impact:

None

Audit:

Method 1
SSH to the worker nodes
To check to see if the Kubelet Service is running:

sudo systemctl status kubelet

The output should return Active: active (running) since..
Run the following command on each node to find the appropriate kubeconfig file:

ps -ef | grep kubelet

The output of the above command should return something similar to --kubeconfig
/var/lib/kubelet/kubeconfig which is the location of the kubeconfig file.
Run this command to obtain the kubeconfig file ownership:

stat -c %U:%G /var/lib/kubelet/kubeconfig

The output of the above command gives you the kubeconfig file's ownership. Verify that
the ownership is set to root:root.
Method 2
Create and Run a Privileged Pod.
You will need to run a pod that is privileged enough to access the host's file system.
This can be achieved by deploying a pod that uses the hostPath volume to mount the
node's file system into the pod.
Here's an example of a simple pod definition that mounts the root of the host to /host
within the pod:

Page 28

Internal Only - General

apiVersion: v1
kind: Pod
metadata:
 name: file-check
spec:
 volumes:
 - name: host-root
 hostPath:
 path: /
 type: Directory
 containers:
 - name: nsenter
 image: busybox
 command: ["sleep", "3600"]
 volumeMounts:
 - name: host-root
 mountPath: /host
 securityContext:
 privileged: true

Save this to a file (e.g., file-check-pod.yaml) and create the pod:

kubectl apply -f file-check-pod.yaml

Once the pod is running, you can exec into it to check file ownership on the node:

kubectl exec -it file-check -- sh

Now you are in a shell inside the pod, but you can access the node's file system through
the /host directory and check the ownership of the file:

ls -l /host/var/lib/kubelet/kubeconfig

The output of the above command gives you the kubeconfig file's ownership. Verify that
the ownership is set to root:root.

Remediation:

Run the below command (based on the file location on your system) on each worker
node.
For example,

chown root:root <proxy kubeconfig file>

Default Value:

See the AWS EKS documentation for the default value.

References:

1. https://kubernetes.io/docs/admin/kube-proxy/

https://kubernetes.io/docs/admin/kube-proxy/

Page 29

Internal Only - General

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8
3.3 Configure Data Access Control Lists
 Configure data access control lists based on a user’s need to know. Apply data
access control lists, also known as access permissions, to local and remote file
systems, databases, and applications.

● ● ●

v7

5.2 Maintain Secure Images
 Maintain secure images or templates for all systems in the enterprise based on
the organization's approved configuration standards. Any new system deployment
or existing system that becomes compromised should be imaged using one of
those images or templates.

 ● ●

Page 30

Internal Only - General

3.1.3 Ensure that the kubelet configuration file has permissions

set to 644 or more restrictive (Automated)

Profile Applicability:

• Level 1

Description:

Ensure that if the kubelet refers to a configuration file with the --config argument, that
file has permissions of 644 or more restrictive.

Rationale:

The kubelet reads various parameters, including security settings, from a config file
specified by the --config argument. If this file is specified you should restrict its file
permissions to maintain the integrity of the file. The file should be writable by only the
administrators on the system.

Impact:

None.

Audit:

Method 1
First, SSH to the relevant worker node:
To check to see if the Kubelet Service is running:

sudo systemctl status kubelet

The output should return Active: active (running) since..
Run the following command on each node to find the appropriate Kubelet config file:

ps -ef | grep kubelet

The output of the above command should return something similar to --config
/etc/kubernetes/kubelet/config.json which is the location of the Kubelet config
file.
Run the following command:

Page 31

Internal Only - General

stat -c %a /etc/kubernetes/kubelet/config.json

The output of the above command is the Kubelet config file's permissions. Verify that
the permissions are 644 or more restrictive.
Method 2
Create and Run a Privileged Pod.
You will need to run a pod that is privileged enough to access the host's file system.
This can be achieved by deploying a pod that uses the hostPath volume to mount the
node's file system into the pod.
Here's an example of a simple pod definition that mounts the root of the host to /host
within the pod:

apiVersion: v1
kind: Pod
metadata:
 name: file-check
spec:
 volumes:
 - name: host-root
 hostPath:
 path: /
 type: Directory
 containers:
 - name: nsenter
 image: busybox
 command: ["sleep", "3600"]
 volumeMounts:
 - name: host-root
 mountPath: /host
 securityContext:
 privileged: true

Save this to a file (e.g., file-check-pod.yaml) and create the pod:

kubectl apply -f file-check-pod.yaml

Once the pod is running, you can exec into it to check file permissions on the node:

kubectl exec -it file-check -- sh

Now you are in a shell inside the pod, but you can access the node's file system through
the /host directory and check the permission level of the file:

ls -l /host/etc/kubernetes/kubelet/config.json

Verify that if a file is specified and it exists, the permissions are 644 or more restrictive.

Remediation:

Run the following command (using the config file location identified in the Audit step)

chmod 644 /etc/kubernetes/kubelet/config.json

Default Value:

See the AWS EKS documentation for the default value.

Page 32

Internal Only - General

References:

1. https://kubernetes.io/docs/tasks/administer-cluster/kubelet-config-file/

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8
3.3 Configure Data Access Control Lists
 Configure data access control lists based on a user’s need to know. Apply data
access control lists, also known as access permissions, to local and remote file
systems, databases, and applications.

● ● ●

v7

5.2 Maintain Secure Images
 Maintain secure images or templates for all systems in the enterprise based on
the organization's approved configuration standards. Any new system deployment
or existing system that becomes compromised should be imaged using one of
those images or templates.

 ● ●

https://kubernetes.io/docs/tasks/administer-cluster/kubelet-config-file/

Page 33

Internal Only - General

3.1.4 Ensure that the kubelet configuration file ownership is set to

root:root (Automated)

Profile Applicability:

• Level 1

Description:

Ensure that if the kubelet refers to a configuration file with the --config argument, that
file is owned by root:root.

Rationale:

The kubelet reads various parameters, including security settings, from a config file
specified by the --config argument. If this file is specified you should restrict its file
permissions to maintain the integrity of the file. The file should be writable by only the
administrators on the system.

Impact:

None

Audit:

Method 1
First, SSH to the relevant worker node:
To check to see if the Kubelet Service is running:

sudo systemctl status kubelet

The output should return Active: active (running) since..
Run the following command on each node to find the appropriate Kubelet config file:

ps -ef | grep kubelet

The output of the above command should return something similar to --config
/etc/kubernetes/kubelet/config.json which is the location of the Kubelet config
file.
Run the following command:

Page 34

Internal Only - General

stat -c %U:%G /etc/kubernetes/kubelet/config.json

The output of the above command is the Kubelet config file's ownership. Verify that the
ownership is set to root:root
Method 2
Create and Run a Privileged Pod.
You will need to run a pod that is privileged enough to access the host's file system.
This can be achieved by deploying a pod that uses the hostPath volume to mount the
node's file system into the pod.
Here's an example of a simple pod definition that mounts the root of the host to /host
within the pod:

apiVersion: v1
kind: Pod
metadata:
 name: file-check
spec:
 volumes:
 - name: host-root
 hostPath:
 path: /
 type: Directory
 containers:
 - name: nsenter
 image: busybox
 command: ["sleep", "3600"]
 volumeMounts:
 - name: host-root
 mountPath: /host
 securityContext:
 privileged: true

Save this to a file (e.g., file-check-pod.yaml) and create the pod:

kubectl apply -f file-check-pod.yaml

Once the pod is running, you can exec into it to check file ownership on the node:

kubectl exec -it file-check -- sh

Now you are in a shell inside the pod, but you can access the node's file system through
the /host directory and check the ownership of the file:

ls -l /etc/kubernetes/kubelet/config.json

The output of the above command gives you the azure.json file's ownership. Verify that
the ownership is set to root:root.

Remediation:

Run the following command (using the config file location identified in the Audit step)

Page 35

Internal Only - General

chown root:root /etc/kubernetes/kubelet/config.json

Default Value:

See the AWS EKS documentation for the default value.

References:

1. https://kubernetes.io/docs/admin/kube-proxy/

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8
3.3 Configure Data Access Control Lists
 Configure data access control lists based on a user’s need to know. Apply data
access control lists, also known as access permissions, to local and remote file
systems, databases, and applications.

● ● ●

v7

5.2 Maintain Secure Images
 Maintain secure images or templates for all systems in the enterprise based on
the organization's approved configuration standards. Any new system deployment
or existing system that becomes compromised should be imaged using one of
those images or templates.

 ● ●

https://kubernetes.io/docs/admin/kube-proxy/

Page 36

Internal Only - General

3.2 Kubelet

Kubelets can accept configuration via a configuration file and in some cases via
command line arguments. It is important to note that parameters provided as command
line arguments will override their counterpart parameters in the configuration file (see --
config details in the Kubelet CLI Reference for more info, where you can also find out
which configuration parameters can be supplied as a command line argument).

With this in mind, it is important to check for the existence of command line arguments
as well as configuration file entries when auditing Kubelet configuration.

Firstly, SSH to each node and execute the following command to find the Kubelet
process:

ps -ef | grep kubelet

The output of the above command provides details of the active Kubelet process, from
which we can see the command line arguments provided to the process. Also note the
location of the configuration file, provided with the --config argument, as this will be
needed to verify configuration. The file can be viewed with a command such as more or
less, like so:

sudo less /path/to/kubelet-config.json

This config file could be in JSON or YAML format depending on your distribution.

https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/

Page 37

Internal Only - General

3.2.1 Ensure that the Anonymous Auth is Not Enabled

(Automated)

Profile Applicability:

• Level 1

Description:

Disable anonymous requests to the Kubelet server.

Rationale:

When enabled, requests that are not rejected by other configured authentication
methods are treated as anonymous requests. These requests are then served by the
Kubelet server. You should rely on authentication to authorize access and disallow
anonymous requests.

Impact:

This configuration might have a slight impact on usability for users who rely on
anonymous access for certain functions or quick troubleshooting. Additionally, there
might be a minimal performance overhead due to the added authentication steps for
each request.

Audit:

Audit Method 1:
Kubelets can accept configuration via a configuration file and in some cases via
command line arguments. It is important to note that parameters provided as command
line arguments will override their counterpart parameters in the configuration file (see --
config details in the Kubelet CLI Reference for more info, where you can also find out
which configuration parameters can be supplied as a command line argument).
With this in mind, it is important to check for the existence of command line arguments
as well as configuration file entries when auditing Kubelet configuration.
Firstly, SSH to each node and execute the following command to find the Kubelet
process:

ps -ef | grep kubelet

The output of the above command provides details of the active Kubelet process, from
which we can see the command line arguments provided to the process. Also note the
location of the configuration file, provided with the --config argument, as this will be
needed to verify configuration. The file can be viewed with a command such as more or
less, like so:

https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/

Page 38

Internal Only - General

sudo less /path/to/kubelet-config.json

Verify that Anonymous Authentication is not enabled. This may be configured as a
command line argument to the kubelet service with --anonymous-auth=false or in the
kubelet configuration file via "authentication": { "anonymous": { "enabled":
false }.
Audit Method 2:
It is also possible to review the running configuration of a Kubelet via the /configz
endpoint of the Kubernetes API. This can be achieved using kubectl to proxy your
requests to the API.
Discover all nodes in your cluster by running the following command:

kubectl get nodes

Next, initiate a proxy with kubectl on a local port of your choice. In this example we will
use 8080:

kubectl proxy --port=8080

With this running, in a separate terminal run the following command for each node:

export NODE_NAME=my-node-name
curl http://localhost:8080/api/v1/nodes/${NODE_NAME}/proxy/configz

The curl command will return the API response which will be a JSON formatted string
representing the Kubelet configuration.
Verify that Anonymous Authentication is not enabled checking that "authentication":
{ "anonymous": { "enabled": false } is in the API response.

Remediation:

Remediation Method 1:
If configuring via the Kubelet config file, you first need to locate the file.
To do this, SSH to each node and execute the following command to find the kubelet
process:

ps -ef | grep kubelet

The output of the above command provides details of the active kubelet process, from
which we can see the location of the configuration file provided to the kubelet service
with the --config argument. The file can be viewed with a command such as more or
less, like so:

sudo less /path/to/kubelet-config.json

Disable Anonymous Authentication by setting the following parameter:

Page 39

Internal Only - General

"authentication": { "anonymous": { "enabled": false } }

Remediation Method 2:
If using executable arguments, edit the kubelet service file on each worker node and
ensure the below parameters are part of the KUBELET_ARGS variable string.
For systems using systemd, such as the Amazon EKS Optimised Amazon Linux or
Bottlerocket AMIs, then this file can be found at
/etc/systemd/system/kubelet.service.d/10-kubelet-args.conf. Otherwise,
you may need to look up documentation for your chosen operating system to determine
which service manager is configured:

--anonymous-auth=false

For Both Remediation Steps:
Based on your system, restart the kubelet service and check the service status.
The following example is for operating systems using systemd, such as the Amazon
EKS Optimised Amazon Linux or Bottlerocket AMIs, and invokes the systemctl
command. If systemctl is not available then you will need to look up documentation for
your chosen operating system to determine which service manager is configured:

systemctl daemon-reload
systemctl restart kubelet.service
systemctl status kubelet -l

Default Value:

See the EKS documentation for the default value.

References:

1. https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/
2. https://kubernetes.io/docs/reference/access-authn-authz/kubelet-authn-

authz/#kubelet-authentication
3. https://kubernetes.io/docs/reference/config-api/kubelet-config.v1beta1/

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8
5.3 Disable Dormant Accounts
 Delete or disable any dormant accounts after a period of 45 days of inactivity,
where supported.

● ● ●

v7

14.6 Protect Information through Access Control Lists
 Protect all information stored on systems with file system, network share,
claims, application, or database specific access control lists. These controls will
enforce the principle that only authorized individuals should have access to the
information based on their need to access the information as a part of their
responsibilities.

● ● ●

https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/
https://kubernetes.io/docs/reference/access-authn-authz/kubelet-authn-authz/#kubelet-authentication
https://kubernetes.io/docs/reference/access-authn-authz/kubelet-authn-authz/#kubelet-authentication
https://kubernetes.io/docs/reference/config-api/kubelet-config.v1beta1/

Page 40

Internal Only - General

Page 41

Internal Only - General

3.2.2 Ensure that the --authorization-mode argument is not set to

AlwaysAllow (Automated)

Profile Applicability:

• Level 1

Description:

Do not allow all requests. Enable explicit authorization.

Rationale:

Kubelets can be configured to allow all authenticated requests (even anonymous ones)
without needing explicit authorization checks from the apiserver. You should restrict this
behavior and only allow explicitly authorized requests.

Impact:

Unauthorized requests will be denied.

Audit:

Audit Method 1:
Kubelets can accept configuration via a configuration file and in some cases via
command line arguments. It is important to note that parameters provided as command
line arguments will override their counterpart parameters in the configuration file (see --
config details in the Kubelet CLI Reference for more info, where you can also find out
which configuration parameters can be supplied as a command line argument).
With this in mind, it is important to check for the existence of command line arguments
as well as configuration file entries when auditing Kubelet configuration.
Firstly, SSH to each node and execute the following command to find the Kubelet
process:

ps -ef | grep kubelet

The output of the above command provides details of the active Kubelet process, from
which we can see the command line arguments provided to the process. Also note the
location of the configuration file, provided with the --config argument, as this will be
needed to verify configuration. The file can be viewed with a command such as more or
less, like so:

https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/

Page 42

Internal Only - General

sudo less /path/to/kubelet-config.json

Verify that Webhook Authentication is enabled. This may be enabled as a command line
argument to the kubelet service with --authentication-token-webhook or in the
kubelet configuration file via "authentication": { "webhook": { "enabled":
true } }.
Verify that the Authorization Mode is set to WebHook. This may be set as a command
line argument to the kubelet service with --authorization-mode=Webhook or in the
configuration file via "authorization": { "mode": "Webhook }.
Audit Method 2:
It is also possible to review the running configuration of a Kubelet via the /configz
endpoint of the Kubernetes API. This can be achieved using kubectl to proxy your
requests to the API.
Discover all nodes in your cluster by running the following command:

kubectl get nodes

Next, initiate a proxy with kubectl on a local port of your choice. In this example we will
use 8080:

kubectl proxy --port=8080

With this running, in a separate terminal run the following command for each node:

export NODE_NAME=my-node-name
curl http://localhost:8080/api/v1/nodes/${NODE_NAME}/proxy/configz

The curl command will return the API response which will be a JSON formatted string
representing the Kubelet configuration.
Verify that Webhook Authentication is enabled with "authentication": {
"webhook": { "enabled": true } } in the API response.
Verify that the Authorization Mode is set to WebHook with "authorization": {
"mode": "Webhook } in the API response.

Remediation:

Remediation Method 1:
If configuring via the Kubelet config file, you first need to locate the file.
To do this, SSH to each node and execute the following command to find the kubelet
process:

ps -ef | grep kubelet

The output of the above command provides details of the active kubelet process, from
which we can see the location of the configuration file provided to the kubelet service
with the --config argument. The file can be viewed with a command such as more or
less, like so:

sudo less /path/to/kubelet-config.json

Enable Webhook Authentication by setting the following parameter:

Page 43

Internal Only - General

"authentication": { "webhook": { "enabled": true } }

Next, set the Authorization Mode to Webhook by setting the following parameter:

"authorization": { "mode": "Webhook }

Finer detail of the authentication and authorization fields can be found in the
Kubelet Configuration documentation.
Remediation Method 2:
If using executable arguments, edit the kubelet service file on each worker node and
ensure the below parameters are part of the KUBELET_ARGS variable string.
For systems using systemd, such as the Amazon EKS Optimised Amazon Linux or
Bottlerocket AMIs, then this file can be found at
/etc/systemd/system/kubelet.service.d/10-kubelet-args.conf. Otherwise,
you may need to look up documentation for your chosen operating system to determine
which service manager is configured:

--authentication-token-webhook
--authorization-mode=Webhook

For Both Remediation Steps:
Based on your system, restart the kubelet service and check the service status.
The following example is for operating systems using systemd, such as the Amazon
EKS Optimised Amazon Linux or Bottlerocket AMIs, and invokes the systemctl
command. If systemctl is not available then you will need to look up documentation for
your chosen operating system to determine which service manager is configured:

systemctl daemon-reload
systemctl restart kubelet.service
systemctl status kubelet -l

Default Value:

See the EKS documentation for the default value.

References:

1. https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/
2. https://kubernetes.io/docs/reference/access-authn-authz/kubelet-authn-

authz/#kubelet-authentication
3. https://kubernetes.io/docs/reference/config-api/kubelet-config.v1beta1/

https://kubernetes.io/docs/reference/config-api/kubelet-config.v1beta1/
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/
https://kubernetes.io/docs/reference/access-authn-authz/kubelet-authn-authz/#kubelet-authentication
https://kubernetes.io/docs/reference/access-authn-authz/kubelet-authn-authz/#kubelet-authentication
https://kubernetes.io/docs/reference/config-api/kubelet-config.v1beta1/

Page 44

Internal Only - General

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

5.4 Restrict Administrator Privileges to Dedicated
Administrator Accounts
 Restrict administrator privileges to dedicated administrator accounts on
enterprise assets. Conduct general computing activities, such as internet
browsing, email, and productivity suite use, from the user’s primary, non-privileged
account.

● ● ●

v7
4.2 Change Default Passwords
 Before deploying any new asset, change all default passwords to have values
consistent with administrative level accounts.

● ● ●

Page 45

Internal Only - General

3.2.3 Ensure that a Client CA File is Configured (Automated)

Profile Applicability:

• Level 1

Description:

Enable Kubelet authentication using certificates.

Rationale:

The connections from the apiserver to the kubelet are used for fetching logs for pods,
attaching (through kubectl) to running pods, and using the kubelet’s port-forwarding
functionality. These connections terminate at the kubelet’s HTTPS endpoint. By default,
the apiserver does not verify the kubelet’s serving certificate, which makes the
connection subject to man-in-the-middle attacks, and unsafe to run over untrusted
and/or public networks. Enabling Kubelet certificate authentication ensures that the
apiserver could authenticate the Kubelet before submitting any requests.

Impact:

You require TLS to be configured on apiserver as well as kubelets.

Audit:

Audit Method 1:
Kubelets can accept configuration via a configuration file and in some cases via
command line arguments. It is important to note that parameters provided as command
line arguments will override their counterpart parameters in the configuration file (see --
config details in the Kubelet CLI Reference for more info, where you can also find out
which configuration parameters can be supplied as a command line argument).
With this in mind, it is important to check for the existence of command line arguments
as well as configuration file entries when auditing Kubelet configuration.
Firstly, SSH to each node and execute the following command to find the Kubelet
process:

ps -ef | grep kubelet

The output of the above command provides details of the active Kubelet process, from
which we can see the command line arguments provided to the process. Also note the
location of the configuration file, provided with the --config argument, as this will be
needed to verify configuration. The file can be viewed with a command such as more or
less, like so:

https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/

Page 46

Internal Only - General

sudo less /path/to/kubelet-config.json

Verify that a client certificate authority file is configured. This may be configured using a
command line argument to the kubelet service with --client-ca-file or in the kubelet
configuration file via "authentication": { "x509": {"clientCAFile":
<path/to/client-ca-file> } }".
Audit Method 2:
It is also possible to review the running configuration of a Kubelet via the /configz
endpoint of the Kubernetes API. This can be achieved using kubectl to proxy your
requests to the API.
Discover all nodes in your cluster by running the following command:

kubectl get nodes

Next, initiate a proxy with kubectl on a local port of your choice. In this example we will
use 8080:

kubectl proxy --port=8080

With this running, in a separate terminal run the following command for each node:

export NODE_NAME=my-node-name
curl http://localhost:8080/api/v1/nodes/${NODE_NAME}/proxy/configz

The curl command will return the API response which will be a JSON formatted string
representing the Kubelet configuration.
Verify that a client certificate authority file is configured with "authentication": {
"x509": {"clientCAFile": <path/to/client-ca-file> } }" in the API response.

Remediation:

Remediation Method 1:
If configuring via the Kubelet config file, you first need to locate the file.
To do this, SSH to each node and execute the following command to find the kubelet
process:

ps -ef | grep kubelet

The output of the above command provides details of the active kubelet process, from
which we can see the location of the configuration file provided to the kubelet service
with the --config argument. The file can be viewed with a command such as more or
less, like so:

sudo less /path/to/kubelet-config.json

Configure the client certificate authority file by setting the following parameter
appropriately:

Page 47

Internal Only - General

"authentication": { "x509": {"clientCAFile": <path/to/client-ca-file> } }"

Remediation Method 2:
If using executable arguments, edit the kubelet service file on each worker node and
ensure the below parameters are part of the KUBELET_ARGS variable string.
For systems using systemd, such as the Amazon EKS Optimised Amazon Linux or
Bottlerocket AMIs, then this file can be found at
/etc/systemd/system/kubelet.service.d/10-kubelet-args.conf. Otherwise,
you may need to look up documentation for your chosen operating system to determine
which service manager is configured:

--client-ca-file=<path/to/client-ca-file>

For Both Remediation Steps:
Based on your system, restart the kubelet service and check the service status.
The following example is for operating systems using systemd, such as the Amazon
EKS Optimised Amazon Linux or Bottlerocket AMIs, and invokes the systemctl
command. If systemctl is not available then you will need to look up documentation for
your chosen operating system to determine which service manager is configured:

systemctl daemon-reload
systemctl restart kubelet.service
systemctl status kubelet -l

Default Value:

See the EKS documentation for the default value.

References:

1. https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/
2. https://kubernetes.io/docs/reference/access-authn-authz/kubelet-authn-

authz/#kubelet-authentication
3. https://kubernetes.io/docs/reference/config-api/kubelet-config.v1beta1/

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8
3.10 Encrypt Sensitive Data in Transit
 Encrypt sensitive data in transit. Example implementations can include:
Transport Layer Security (TLS) and Open Secure Shell (OpenSSH).

 ● ●

v7 14.4 Encrypt All Sensitive Information in Transit
 Encrypt all sensitive information in transit.

 ● ●

https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/
https://kubernetes.io/docs/reference/access-authn-authz/kubelet-authn-authz/#kubelet-authentication
https://kubernetes.io/docs/reference/access-authn-authz/kubelet-authn-authz/#kubelet-authentication
https://kubernetes.io/docs/reference/config-api/kubelet-config.v1beta1/

Page 48

Internal Only - General

3.2.4 Ensure that the --read-only-port is disabled (Automated)

Profile Applicability:

• Level 1

Description:

Disable the read-only port.

Rationale:

The Kubelet process provides a read-only API in addition to the main Kubelet API.
Unauthenticated access is provided to this read-only API which could possibly retrieve
potentially sensitive information about the cluster.

Impact:

Removal of the read-only port will require that any service which made use of it will
need to be re-configured to use the main Kubelet API.

Audit:

If using a Kubelet configuration file, check that there is an entry for authentication:
anonymous: enabled set to 0.
First, SSH to the relevant node:
Run the following command on each node to find the appropriate Kubelet config file:

ps -ef | grep kubelet

The output of the above command should return something similar to --config
/etc/kubernetes/kubelet/kubelet-config.json which is the location of the
Kubelet config file.
Open the Kubelet config file:

cat /etc/kubernetes/kubelet/kubelet-config.json

Verify that the --read-only-port argument exists and is set to 0.
If the --read-only-port argument is not present, check that there is a Kubelet config
file specified by --config. Check that if there is a readOnlyPort entry in the file, it is
set to 0.

Remediation:

If modifying the Kubelet config file, edit the kubelet-config.json file
/etc/kubernetes/kubelet/kubelet-config.json and set the below parameter to 0

Page 49

Internal Only - General

"readOnlyPort": 0

If using executable arguments, edit the kubelet service file
/etc/systemd/system/kubelet.service.d/10-kubelet-args.conf on each
worker node and add the below parameter at the end of the KUBELET_ARGS variable
string.

--read-only-port=0

For each remediation:
Based on your system, restart the kubelet service and check status

systemctl daemon-reload
systemctl restart kubelet.service
systemctl status kubelet -l

Default Value:

See the Amazon EKS documentation for the default value.

References:

1. https://kubernetes.io/docs/admin/kubelet/

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

12.6 Use of Secure Network Management and
Communication Protocols
 Use secure network management and communication protocols (e.g.,
802.1X, Wi-Fi Protected Access 2 (WPA2) Enterprise or greater).

 ● ●

v7

9.2 Ensure Only Approved Ports, Protocols and Services
Are Running
 Ensure that only network ports, protocols, and services listening on a system
with validated business needs, are running on each system.

 ● ●

https://kubernetes.io/docs/admin/kubelet/

Page 50

Internal Only - General

3.2.5 Ensure that the --streaming-connection-idle-timeout

argument is not set to 0 (Automated)

Profile Applicability:

• Level 1

Description:

Do not disable timeouts on streaming connections.

Rationale:

Setting idle timeouts ensures that you are protected against Denial-of-Service attacks,
inactive connections and running out of ephemeral ports.

Note: By default, --streaming-connection-idle-timeout is set to 4 hours which
might be too high for your environment. Setting this as appropriate would additionally
ensure that such streaming connections are timed out after serving legitimate use
cases.

Impact:

Long-lived connections could be interrupted.

Audit:

Audit Method 1:
First, SSH to the relevant node:
Run the following command on each node to find the running kubelet process:

ps -ef | grep kubelet

If the command line for the process includes the argument streaming-connection-
idle-timeout verify that it is not set to 0.
If the streaming-connection-idle-timeout argument is not present in the output of
the above command, refer instead to the config argument that specifies the location of
the Kubelet config file e.g. --config /etc/kubernetes/kubelet/kubelet-
config.json.
Open the Kubelet config file:

Page 51

Internal Only - General

cat /etc/kubernetes/kubelet/kubelet-config.json

Verify that the streamingConnectionIdleTimeout argument is not set to 0.
Audit Method 2:
If using the api configz endpoint consider searching for the status of
"streamingConnectionIdleTimeout":"4h0m0s" by extracting the live configuration
from the nodes running kubelet.
Set the local proxy port and the following variables and provide proxy port number and
node name;
HOSTNAME_PORT="localhost-and-port-number"
NODE_NAME="The-Name-Of-Node-To-Extract-Configuration" from the output
of "kubectl get nodes"

kubectl proxy --port=8001 &

export HOSTNAME_PORT=localhost:8001 (example host and port number)
export NODE_NAME=ip-192.168.31.226.ec2.internal (example node name from
"kubectl get nodes")

curl -sSL "http://${HOSTNAME_PORT}/api/v1/nodes/${NODE_NAME}/proxy/configz"

Remediation:

Remediation Method 1:
If modifying the Kubelet config file, edit the kubelet-config.json file
/etc/kubernetes/kubelet/kubelet-config.json and set the below parameter to a
non-zero value in the format of #h#m#s

"streamingConnectionIdleTimeout": "4h0m0s"

You should ensure that the kubelet service file
/etc/systemd/system/kubelet.service.d/10-kubelet-args.conf does not
specify a --streaming-connection-idle-timeout argument because it would
override the Kubelet config file.
Remediation Method 2:
If using executable arguments, edit the kubelet service file
/etc/systemd/system/kubelet.service.d/10-kubelet-args.conf on each
worker node and add the below parameter at the end of the KUBELET_ARGS variable
string.

--streaming-connection-idle-timeout=4h0m0s

Remediation Method 3:
If using the api configz endpoint consider searching for the status of
"streamingConnectionIdleTimeout": by extracting the live configuration from the
nodes running kubelet.
**See detailed step-by-step configmap procedures in Reconfigure a Node's Kubelet in a
Live Cluster, and then rerun the curl statement from audit process to check for kubelet
configuration changes

https://kubernetes.io/docs/tasks/administer-cluster/reconfigure-kubelet/
https://kubernetes.io/docs/tasks/administer-cluster/reconfigure-kubelet/

Page 52

Internal Only - General

kubectl proxy --port=8001 &

export HOSTNAME_PORT=localhost:8001 (example host and port number)
export NODE_NAME=ip-192.168.31.226.ec2.internal (example node name from
"kubectl get nodes")

curl -sSL "http://${HOSTNAME_PORT}/api/v1/nodes/${NODE_NAME}/proxy/configz"

For all three remediations:
Based on your system, restart the kubelet service and check status

systemctl daemon-reload
systemctl restart kubelet.service
systemctl status kubelet -l

Default Value:

See the EKS documentation for the default value.

References:

1. https://kubernetes.io/docs/admin/kubelet/
2. https://github.com/kubernetes/kubernetes/pull/18552

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

12.6 Use of Secure Network Management and
Communication Protocols
 Use secure network management and communication protocols (e.g.,
802.1X, Wi-Fi Protected Access 2 (WPA2) Enterprise or greater).

 ● ●

v7

9.2 Ensure Only Approved Ports, Protocols and Services
Are Running
 Ensure that only network ports, protocols, and services listening on a system
with validated business needs, are running on each system.

 ● ●

https://kubernetes.io/docs/admin/kubelet/
https://github.com/kubernetes/kubernetes/pull/18552

Page 53

Internal Only - General

3.2.6 Ensure that the --make-iptables-util-chains argument is set

to true (Automated)

Profile Applicability:

• Level 1

Description:

Allow Kubelet to manage iptables.

Rationale:

Kubelets can automatically manage the required changes to iptables based on how you
choose your networking options for the pods. It is recommended to let kubelets manage
the changes to iptables. This ensures that the iptables configuration remains in sync
with pods networking configuration. Manually configuring iptables with dynamic pod
network configuration changes might hamper the communication between
pods/containers and to the outside world. You might have iptables rules too restrictive
or too open.

Impact:

Kubelet would manage the iptables on the system and keep it in sync. If you are using
any other iptables management solution, then there might be some conflicts.

Audit:

Audit Method 1:
First, SSH to each node:
Run the following command on each node to find the Kubelet process:

ps -ef | grep kubelet

If the output of the above command includes the argument --make-iptables-util-
chains then verify it is set to true.
If the --make-iptables-util-chains argument does not exist, and there is a Kubelet
config file specified by --config, verify that the file does not set
makeIPTablesUtilChains to false.
Audit Method 2:
If using the api configz endpoint consider searching for the status of
authentication... "makeIPTablesUtilChains.:true by extracting the live
configuration from the nodes running kubelet.
Set the local proxy port and the following variables and provide proxy port number and
node name;
HOSTNAME_PORT="localhost-and-port-number"
NODE_NAME="The-Name-Of-Node-To-Extract-Configuration" from the output
of "kubectl get nodes"

Page 54

Internal Only - General

kubectl proxy --port=8001 &

export HOSTNAME_PORT=localhost:8001 (example host and port number)
export NODE_NAME=ip-192.168.31.226.ec2.internal (example node name from
"kubectl get nodes")

curl -sSL "http://${HOSTNAME_PORT}/api/v1/nodes/${NODE_NAME}/proxy/configz"

Remediation:

Remediation Method 1:
If modifying the Kubelet config file, edit the kubelet-config.json file
/etc/kubernetes/kubelet/kubelet-config.json and set the below parameter to
true

"makeIPTablesUtilChains": true

Ensure that /etc/systemd/system/kubelet.service.d/10-kubelet-args.conf
does not set the --make-iptables-util-chains argument because that would
override your Kubelet config file.
Remediation Method 2:
If using executable arguments, edit the kubelet service file
/etc/systemd/system/kubelet.service.d/10-kubelet-args.conf on each
worker node and add the below parameter at the end of the KUBELET_ARGS variable
string.

--make-iptables-util-chains:true

Remediation Method 3:
If using the api configz endpoint consider searching for the status of
"makeIPTablesUtilChains.: true by extracting the live configuration from the nodes
running kubelet.
**See detailed step-by-step configmap procedures in Reconfigure a Node's Kubelet in a
Live Cluster, and then rerun the curl statement from audit process to check for kubelet
configuration changes

kubectl proxy --port=8001 &

export HOSTNAME_PORT=localhost:8001 (example host and port number)
export NODE_NAME=ip-192.168.31.226.ec2.internal (example node name from
"kubectl get nodes")

curl -sSL "http://${HOSTNAME_PORT}/api/v1/nodes/${NODE_NAME}/proxy/configz"

For all three remediations:
Based on your system, restart the kubelet service and check status

https://kubernetes.io/docs/tasks/administer-cluster/reconfigure-kubelet/
https://kubernetes.io/docs/tasks/administer-cluster/reconfigure-kubelet/

Page 55

Internal Only - General

systemctl daemon-reload
systemctl restart kubelet.service
systemctl status kubelet -l

Default Value:

See the Amazon EKS documentation for the default value.

References:

1. https://kubernetes.io/docs/admin/kubelet/
2. https://kubernetes.io/docs/tasks/administer-cluster/reconfigure-kubelet/

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8
12.3 Securely Manage Network Infrastructure
 Securely manage network infrastructure. Example implementations include
version-controlled-infrastructure-as-code, and the use of secure network
protocols, such as SSH and HTTPS.

 ● ●

v7

11.1 Maintain Standard Security Configurations for
Network Devices
 Maintain standard, documented security configuration standards for all
authorized network devices.

 ● ●

https://kubernetes.io/docs/admin/kubelet/
https://kubernetes.io/docs/tasks/administer-cluster/reconfigure-kubelet/

Page 56

Internal Only - General

3.2.7 Ensure that the --eventRecordQPS argument is set to 0 or a

level which ensures appropriate event capture (Automated)

Profile Applicability:

• Level 1

Description:

Security relevant information should be captured. The eventRecordQPS on the Kubelet
configuration can be used to limit the rate at which events are gathered and sets the
maximum event creations per second. Setting this too low could result in relevant
events not being logged, however the unlimited setting of 0 could result in a denial of
service on the kubelet.

Rationale:

It is important to capture all events and not restrict event creation. Events are an
important source of security information and analytics that ensure that your environment
is consistently monitored using the event data.

Impact:

Setting this parameter to 0 could result in a denial of service condition due to excessive
events being created. The cluster's event processing and storage systems should be
scaled to handle expected event loads.

Audit:

Run the following command on each node:

sudo grep "eventRecordQPS" /etc/systemd/system/kubelet.service.d/10-
kubeadm.conf

Review the value set for the argument and determine whether this has been set to an
appropriate level for the cluster.
If the argument does not exist, check that there is a Kubelet config file specified by --
config and review the value in this location.

Remediation:

If using a Kubelet config file, edit the file to set eventRecordQPS: to an appropriate
level.
If using command line arguments, edit the kubelet service file
/etc/systemd/system/kubelet.service.d/10-kubeadm.conf on each worker node
and set the below parameter in KUBELET_SYSTEM_PODS_ARGS variable.
Based on your system, restart the kubelet service. For example:

Page 57

Internal Only - General

systemctl daemon-reload
systemctl restart kubelet.service

Default Value:

See the Amazon EKS documentation for the default value.

References:

1. https://kubernetes.io/docs/admin/kubelet/
2. https://github.com/kubernetes/kubernetes/blob/master/pkg/kubelet/apis/kubeletco

nfig/v1beta1/types.go
3. https://kubernetes.io/docs/tasks/administer-cluster/reconfigure-kubelet/

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8
8.2 Collect Audit Logs
 Collect audit logs. Ensure that logging, per the enterprise’s audit log
management process, has been enabled across enterprise assets.

● ● ●

v8
8.5 Collect Detailed Audit Logs
 Configure detailed audit logging for enterprise assets containing sensitive data.
Include event source, date, username, timestamp, source addresses, destination
addresses, and other useful elements that could assist in a forensic investigation.

 ● ●

v7
6.2 Activate audit logging
 Ensure that local logging has been enabled on all systems and networking
devices.

● ● ●

v7
6.3 Enable Detailed Logging
 Enable system logging to include detailed information such as an event source,
date, user, timestamp, source addresses, destination addresses, and other useful
elements.

 ● ●

https://kubernetes.io/docs/admin/kubelet/
https://github.com/kubernetes/kubernetes/blob/master/pkg/kubelet/apis/kubeletconfig/v1beta1/types.go
https://github.com/kubernetes/kubernetes/blob/master/pkg/kubelet/apis/kubeletconfig/v1beta1/types.go
https://kubernetes.io/docs/tasks/administer-cluster/reconfigure-kubelet/

Page 58

Internal Only - General

3.2.8 Ensure that the --rotate-certificates argument is not present

or is set to true (Automated)

Profile Applicability:

• Level 1

Description:

Enable kubelet client certificate rotation.

Rationale:

The --rotate-certificates setting causes the kubelet to rotate its client certificates
by creating new CSRs as its existing credentials expire. This automated periodic
rotation ensures that the there is no downtime due to expired certificates and thus
addressing availability in the CIA (Confidentiality, Integrity, and Availability) security
triad.

Note: This recommendation only applies if you let kubelets get their certificates from the
API server. In case your kubelet certificates come from an outside authority/tool (e.g.
Vault) then you need to implement rotation yourself.

Note: This feature also requires the RotateKubeletClientCertificate feature gate
to be enabled.

Impact:

None

Audit:

Audit Method 1:
SSH to each node and run the following command to find the Kubelet process:

ps -ef | grep kubelet

If the output of the command above includes the --RotateCertificate executable
argument, verify that it is set to true.
If the output of the command above does not include the --RotateCertificate
executable argument then check the Kubelet config file. The output of the above
command should return something similar to --config
/etc/kubernetes/kubelet/kubelet-config.json which is the location of the
Kubelet config file.
Open the Kubelet config file:

cat /etc/kubernetes/kubelet/kubelet-config.json

Verify that the RotateCertificate argument is not present, or is set to true.

Page 59

Internal Only - General

Remediation:

Remediation Method 1:
If modifying the Kubelet config file, edit the kubelet-config.json file
/etc/kubernetes/kubelet/kubelet-config.json and set the below parameter to
true

"RotateCertificate":true

Additionally, ensure that the kubelet service file
/etc/systemd/system/kubelet.service.d/10-kubelet-args.conf does not set the --
RotateCertificate executable argument to false because this would override the Kubelet
config file.
Remediation Method 2:
If using executable arguments, edit the kubelet service file
/etc/systemd/system/kubelet.service.d/10-kubelet-args.conf on each
worker node and add the below parameter at the end of the KUBELET_ARGS variable
string.

--RotateCertificate=true

Default Value:

See the Amazon EKS documentation for the default value.

References:

1. https://github.com/kubernetes/kubernetes/pull/41912
2. https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet-tls-

bootstrapping/#kubelet-configuration
3. https://kubernetes.io/docs/imported/release/notes/
4. https://kubernetes.io/docs/reference/command-line-tools-reference/feature-gates/
5. https://kubernetes.io/docs/tasks/administer-cluster/reconfigure-kubelet/

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8
3.10 Encrypt Sensitive Data in Transit
 Encrypt sensitive data in transit. Example implementations can include:
Transport Layer Security (TLS) and Open Secure Shell (OpenSSH).

 ● ●

v7 14.4 Encrypt All Sensitive Information in Transit
 Encrypt all sensitive information in transit.

 ● ●

https://github.com/kubernetes/kubernetes/pull/41912
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet-tls-bootstrapping/#kubelet-configuration
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet-tls-bootstrapping/#kubelet-configuration
https://kubernetes.io/docs/imported/release/notes/
https://kubernetes.io/docs/reference/command-line-tools-reference/feature-gates/
https://kubernetes.io/docs/tasks/administer-cluster/reconfigure-kubelet/

Page 60

Internal Only - General

3.2.9 Ensure that the RotateKubeletServerCertificate argument is

set to true (Automated)

Profile Applicability:

• Level 1

Description:

Enable kubelet server certificate rotation.

Rationale:

RotateKubeletServerCertificate causes the kubelet to both request a serving
certificate after bootstrapping its client credentials and rotate the certificate as its
existing credentials expire. This automated periodic rotation ensures that the there are
no downtimes due to expired certificates and thus addressing availability in the CIA
(Confidentiality, Integrity, and Availability) security triad.

Note: This recommendation only applies if you let kubelets get their certificates from the
API server. In case your kubelet certificates come from an outside authority/tool (e.g.
Vault) then you need to implement rotation yourself.

Impact:

None

Audit:

Audit Method 1:
First, SSH to each node:
Run the following command on each node to find the Kubelet process:

ps -ef | grep kubelet

If the output of the command above includes the --rotate-kubelet-server-
certificate executable argument verify that it is set to true.
If the process does not have the --rotate-kubelet-server-certificate executable
argument then check the Kubelet config file. The output of the above command should
return something similar to --config /etc/kubernetes/kubelet/kubelet-
config.json which is the location of the Kubelet config file.
Open the Kubelet config file:

Page 61

Internal Only - General

cat /etc/kubernetes/kubelet/kubelet-config.json

Verify that RotateKubeletServerCertificate argument exists in the featureGates
section and is set to true.
Audit Method 2:
If using the api configz endpoint consider searching for the status of
"RotateKubeletServerCertificate":true by extracting the live configuration from
the nodes running kubelet.
Set the local proxy port and the following variables and provide proxy port number and
node name;
HOSTNAME_PORT="localhost-and-port-number"
NODE_NAME="The-Name-Of-Node-To-Extract-Configuration" from the output
of "kubectl get nodes"

kubectl proxy --port=8001 &

export HOSTNAME_PORT=localhost:8001 (example host and port number)
export NODE_NAME=ip-192.168.31.226.ec2.internal (example node name from
"kubectl get nodes")

curl -sSL "http://${HOSTNAME_PORT}/api/v1/nodes/${NODE_NAME}/proxy/configz"

Remediation:

Remediation Method 1:
If modifying the Kubelet config file, edit the kubelet-config.json file
/etc/kubernetes/kubelet/kubelet-config.json and set the below parameter to
true

"featureGates": {
 "RotateKubeletServerCertificate":true
},

Additionally, ensure that the kubelet service file
/etc/systemd/system/kubelet.service.d/10-kubelet-args.conf does not set
the --rotate-kubelet-server-certificate executable argument to false because
this would override the Kubelet config file.
Remediation Method 2:
If using executable arguments, edit the kubelet service file
/etc/systemd/system/kubelet.service.d/10-kubelet-args.conf on each
worker node and add the below parameter at the end of the KUBELET_ARGS variable
string.

Page 62

Internal Only - General

--rotate-kubelet-server-certificate=true

Remediation Method 3:
If using the api configz endpoint consider searching for the status of
"RotateKubeletServerCertificate": by extracting the live configuration from the
nodes running kubelet.
**See detailed step-by-step configmap procedures in Reconfigure a Node's Kubelet in a
Live Cluster, and then rerun the curl statement from audit process to check for kubelet
configuration changes

kubectl proxy --port=8001 &

export HOSTNAME_PORT=localhost:8001 (example host and port number)
export NODE_NAME=ip-192.168.31.226.ec2.internal (example node name from
"kubectl get nodes")

curl -sSL "http://${HOSTNAME_PORT}/api/v1/nodes/${NODE_NAME}/proxy/configz"

For all three remediation methods:
Restart the kubelet service and check status. The example below is for when using
systemctl to manage services:

systemctl daemon-reload
systemctl restart kubelet.service
systemctl status kubelet -l

Default Value:

See the Amazon EKS documentation for the default value.

References:

1. https://github.com/kubernetes/kubernetes/pull/45059
2. https://kubernetes.io/docs/admin/kubelet-tls-bootstrapping/#kubelet-configuration

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8
3.10 Encrypt Sensitive Data in Transit
 Encrypt sensitive data in transit. Example implementations can include:
Transport Layer Security (TLS) and Open Secure Shell (OpenSSH).

 ● ●

v7 14.4 Encrypt All Sensitive Information in Transit
 Encrypt all sensitive information in transit.

 ● ●

https://kubernetes.io/docs/tasks/administer-cluster/reconfigure-kubelet/
https://kubernetes.io/docs/tasks/administer-cluster/reconfigure-kubelet/
https://github.com/kubernetes/kubernetes/pull/45059
https://kubernetes.io/docs/admin/kubelet-tls-bootstrapping/#kubelet-configuration

Page 63

Internal Only - General

4 Policies

This section contains recommendations for various Kubernetes policies which are
important to the security of Amazon EKS customer environment.

Page 64

Internal Only - General

4.1 RBAC and Service Accounts

Page 65

Internal Only - General

4.1.1 Ensure that the cluster-admin role is only used where

required (Automated)

Profile Applicability:

• Level 1

Description:

The RBAC role cluster-admin provides wide-ranging powers over the environment
and should be used only where and when needed.

Rationale:

Kubernetes provides a set of default roles where RBAC is used. Some of these roles
such as cluster-admin provide wide-ranging privileges which should only be applied
where absolutely necessary. Roles such as cluster-admin allow super-user access to
perform any action on any resource. When used in a ClusterRoleBinding, it gives full
control over every resource in the cluster and in all namespaces. When used in a
RoleBinding, it gives full control over every resource in the rolebinding's namespace,
including the namespace itself.

Impact:

Care should be taken before removing any clusterrolebindings from the
environment to ensure they were not required for operation of the cluster. Specifically,
modifications should not be made to clusterrolebindings with the system: prefix as
they are required for the operation of system components.

Audit:

Obtain a list of the principals who have access to the cluster-admin role by reviewing
the clusterrolebinding output for each role binding that has access to the cluster-
admin role.
kubectl get clusterrolebindings -o=custom-
columns=NAME:.metadata.name,ROLE:.roleRef.name,SUBJECT:.subjects[*].name
Review each principal listed and ensure that cluster-admin privilege is required for it.

Remediation:

Identify all clusterrolebindings to the cluster-admin role. Check if they are used and if
they need this role or if they could use a role with fewer privileges.
Where possible, first bind users to a lower privileged role and then remove the
clusterrolebinding to the cluster-admin role :

Page 66

Internal Only - General

kubectl delete clusterrolebinding [name]

Default Value:

By default a single clusterrolebinding called cluster-admin is provided with the
system:masters group as its principal.

References:

1. https://kubernetes.io/docs/admin/authorization/rbac/#user-facing-roles

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

5.4 Restrict Administrator Privileges to Dedicated
Administrator Accounts
 Restrict administrator privileges to dedicated administrator accounts on
enterprise assets. Conduct general computing activities, such as internet
browsing, email, and productivity suite use, from the user’s primary, non-privileged
account.

● ● ●

v7
4.3 Ensure the Use of Dedicated Administrative Accounts
 Ensure that all users with administrative account access use a dedicated or
secondary account for elevated activities. This account should only be used for
administrative activities and not internet browsing, email, or similar activities.

● ● ●

https://kubernetes.io/docs/admin/authorization/rbac/#user-facing-roles

Page 67

Internal Only - General

4.1.2 Minimize access to secrets (Automated)

Profile Applicability:

• Level 1

Description:

The Kubernetes API stores secrets, which may be service account tokens for the
Kubernetes API or credentials used by workloads in the cluster. Access to these secrets
should be restricted to the smallest possible group of users to reduce the risk of
privilege escalation.

Rationale:

Inappropriate access to secrets stored within the Kubernetes cluster can allow for an
attacker to gain additional access to the Kubernetes cluster or external resources
whose credentials are stored as secrets.

Impact:

Care should be taken not to remove access to secrets to system components which
require this for their operation

Audit:

Review the users who have get, list or watch access to secrets objects in the
Kubernetes API.

Remediation:

Where possible, remove get, list and watch access to secret objects in the cluster.

Default Value:

By default, the following list of principals have get privileges on secret objects

Page 68

Internal Only - General

CLUSTERROLEBINDING SUBJECT
TYPE SA-NAMESPACE
cluster-admin system:masters
Group
system:controller:clusterrole-aggregation-controller clusterrole-
aggregation-controller ServiceAccount kube-system
system:controller:expand-controller expand-controller
ServiceAccount kube-system
system:controller:generic-garbage-collector generic-garbage-
collector ServiceAccount kube-system
system:controller:namespace-controller namespace-controller
ServiceAccount kube-system
system:controller:persistent-volume-binder persistent-volume-
binder ServiceAccount kube-system
system:kube-controller-manager system:kube-controller-
manager User

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

4.1 Establish and Maintain a Secure Configuration Process
 Establish and maintain a secure configuration process for enterprise assets
(end-user devices, including portable and mobile, non-computing/IoT devices, and
servers) and software (operating systems and applications). Review and update
documentation annually, or when significant enterprise changes occur that could
impact this Safeguard.

● ● ●

v7

5.2 Maintain Secure Images
 Maintain secure images or templates for all systems in the enterprise based on
the organization's approved configuration standards. Any new system deployment
or existing system that becomes compromised should be imaged using one of
those images or templates.

 ● ●

Page 69

Internal Only - General

4.1.3 Minimize wildcard use in Roles and ClusterRoles

(Automated)

Profile Applicability:

• Level 1

Description:

Kubernetes Roles and ClusterRoles provide access to resources based on sets of
objects and actions that can be taken on those objects. It is possible to set either of
these to be the wildcard "*" which matches all items.

Use of wildcards is not optimal from a security perspective as it may allow for
inadvertent access to be granted when new resources are added to the Kubernetes API
either as CRDs or in later versions of the product.

Rationale:

The principle of least privilege recommends that users are provided only the access
required for their role and nothing more. The use of wildcard rights grants is likely to
provide excessive rights to the Kubernetes API.

Audit:

Retrieve the roles defined across each namespaces in the cluster and review for
wildcards

kubectl get roles --all-namespaces -o yaml

Retrieve the cluster roles defined in the cluster and review for wildcards

kubectl get clusterroles -o yaml

Remediation:

Where possible replace any use of wildcards in clusterroles and roles with specific
objects or actions.

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8
5.2 Use Unique Passwords
 Use unique passwords for all enterprise assets. Best practice implementation
includes, at a minimum, an 8-character password for accounts using MFA and a
14-character password for accounts not using MFA.

● ● ●

Page 70

Internal Only - General

Controls
Version

Control IG 1 IG 2 IG 3

v7
4.4 Use Unique Passwords
 Where multi-factor authentication is not supported (such as local administrator,
root, or service accounts), accounts will use passwords that are unique to that
system.

 ● ●

Page 71

Internal Only - General

4.1.4 Minimize access to create pods (Automated)

Profile Applicability:

• Level 1

Description:

The ability to create pods in a namespace can provide a number of opportunities for
privilege escalation, such as assigning privileged service accounts to these pods or
mounting hostPaths with access to sensitive data (unless Pod Security Policies are
implemented to restrict this access)

As such, access to create new pods should be restricted to the smallest possible group
of users.

Rationale:

The ability to create pods in a cluster opens up possibilities for privilege escalation and
should be restricted, where possible.

Impact:

Care should be taken not to remove access to pods to system components which
require this for their operation

Audit:

Review the users who have create access to pod objects in the Kubernetes API.

Remediation:

Where possible, remove create access to pod objects in the cluster.

Default Value:

By default, the following list of principals have create privileges on pod objects

Page 72

Internal Only - General

CLUSTERROLEBINDING SUBJECT
TYPE SA-NAMESPACE
cluster-admin system:masters
Group
system:controller:clusterrole-aggregation-controller clusterrole-
aggregation-controller ServiceAccount kube-system
system:controller:daemon-set-controller daemon-set-controller
ServiceAccount kube-system
system:controller:job-controller job-controller
ServiceAccount kube-system
system:controller:persistent-volume-binder persistent-volume-
binder ServiceAccount kube-system
system:controller:replicaset-controller replicaset-controller
ServiceAccount kube-system
system:controller:replication-controller replication-controller
ServiceAccount kube-system
system:controller:statefulset-controller statefulset-controller
ServiceAccount kube-system

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

2.7 Allowlist Authorized Scripts
 Use technical controls, such as digital signatures and version control, to ensure
that only authorized scripts, such as specific .ps1, .py, etc., files, are allowed to
execute. Block unauthorized scripts from executing. Reassess bi-annually, or more
frequently.

 ●

v7
4.7 Limit Access to Script Tools
 Limit access to scripting tools (such as Microsoft PowerShell and Python) to
only administrative or development users with the need to access those
capabilities.

 ● ●

Page 73

Internal Only - General

4.1.5 Ensure that default service accounts are not actively used.

(Automated)

Profile Applicability:

• Level 1

Description:

The default service account should not be used to ensure that rights granted to
applications can be more easily audited and reviewed.

Rationale:

Kubernetes provides a default service account which is used by cluster workloads
where no specific service account is assigned to the pod.

Where access to the Kubernetes API from a pod is required, a specific service account
should be created for that pod, and rights granted to that service account.

The default service account should be configured such that it does not provide a service
account token and does not have any explicit rights assignments.

Impact:

All workloads which require access to the Kubernetes API will require an explicit service
account to be created.

Audit:

For each namespace in the cluster, review the rights assigned to the default service
account and ensure that it has no roles or cluster roles bound to it apart from the
defaults.
Additionally ensure that the automountServiceAccountToken: false setting is in
place for each default service account.

Remediation:

Create explicit service accounts wherever a Kubernetes workload requires specific
access to the Kubernetes API server.
Modify the configuration of each default service account to include this value

automountServiceAccountToken: false

Automatic remediation for the default account:
kubectl patch serviceaccount default -p
$'automountServiceAccountToken: false'

Page 74

Internal Only - General

Default Value:

By default the default service account allows for its service account token to be
mounted in pods in its namespace.

References:

1. https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-
account/

2. https://aws.github.io/aws-eks-best-practices/iam/#disable-auto-mounting-of-
service-account-tokens

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8
5.3 Disable Dormant Accounts
 Delete or disable any dormant accounts after a period of 45 days of inactivity,
where supported.

● ● ●

v7
4.3 Ensure the Use of Dedicated Administrative Accounts
 Ensure that all users with administrative account access use a dedicated or
secondary account for elevated activities. This account should only be used for
administrative activities and not internet browsing, email, or similar activities.

● ● ●

v7 16.9 Disable Dormant Accounts
 Automatically disable dormant accounts after a set period of inactivity. ● ● ●

https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
https://aws.github.io/aws-eks-best-practices/iam/#disable-auto-mounting-of-service-account-tokens
https://aws.github.io/aws-eks-best-practices/iam/#disable-auto-mounting-of-service-account-tokens

Page 75

Internal Only - General

4.1.6 Ensure that Service Account Tokens are only mounted

where necessary (Automated)

Profile Applicability:

• Level 1

Description:

Service accounts tokens should not be mounted in pods except where the workload
running in the pod explicitly needs to communicate with the API server

Rationale:

Mounting service account tokens inside pods can provide an avenue for privilege
escalation attacks where an attacker is able to compromise a single pod in the cluster.

Avoiding mounting these tokens removes this attack avenue.

Impact:

Pods mounted without service account tokens will not be able to communicate with the
API server, except where the resource is available to unauthenticated principals.

Audit:

Review pod and service account objects in the cluster and ensure that the option below
is set, unless the resource explicitly requires this access.

automountServiceAccountToken: false

Remediation:

Regularly review pod and service account objects in the cluster to ensure that the
automountServiceAccountToken setting is false for pods and accounts that do not
explicitly require API server access.

Default Value:

By default, all pods get a service account token mounted in them.

References:

1. https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-
account/

https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/

Page 76

Internal Only - General

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

4.8 Uninstall or Disable Unnecessary Services on
Enterprise Assets and Software
 Uninstall or disable unnecessary services on enterprise assets and software,
such as an unused file sharing service, web application module, or service
function.

 ● ●

v7

14.7 Enforce Access Control to Data through Automated
Tools
 Use an automated tool, such as host-based Data Loss Prevention, to enforce
access controls to data even when data is copied off a system.

 ●

Page 77

Internal Only - General

4.1.7 Cluster Access Manager API to streamline and enhance the

management of access controls within EKS clusters (Automated)

Profile Applicability:

• Level 1

Description:

Amazon EKS has introduced the Cluster Access Manager API to streamline and
enhance the management of access controls within EKS clusters. This new approach is
now the recommended method over the traditional aws-auth ConfigMap for managing
Role-Based Access Control (RBAC) and Service Accounts.

Key Advantages of Using the Cluster Access Manager API:

1. Simplified Access Management: The Cluster Access Manager API allows
administrators to manage access directly through the Amazon EKS API,
eliminating the need to modify the aws-auth ConfigMap manually. This reduces
operational overhead and minimizes the risk of misconfigurations.

2. Enhanced Security Controls: With this API, administrators can assign
predefined AWS-managed Kubernetes permissions, known as "access policies,"
to IAM principals. This provides a more secure and auditable way to manage
permissions compared to manual ConfigMap edits.

3. Improved Visibility and Auditing: The API offers better visibility into cluster
access configurations, facilitating easier auditing and compliance checks.
Administrators can list and describe access entries and policies directly through
the EKS API.

Rationale:

The compelling rationale for using the Cluster Access Manager API instead of the
traditional aws-auth ConfigMap in Amazon EKS revolves around security, scalability,
operational efficiency, and simplified management.

1. Increased Security and Reduced Risk

• Direct Management via API: The Cluster Access Manager API enables you to
manage RBAC and IAM permissions directly through the EKS API rather than
editing a ConfigMap. This eliminates the risk of inadvertent errors when manually
modifying the aws-auth ConfigMap.

• Immutable Access Entries: The API ensures that once access entries are
defined, they are tightly controlled, reducing the risk of accidental overwrites or
misconfigurations that can happen when editing YAML files.

• Fine-Grained Access Control: By leveraging the new API, you can define access
policies at a more granular level than the previous method. This ensures that
only the necessary permissions are granted, minimizing the attack surface.

Page 78

Internal Only - General

2. Operational Efficiency and Scalability

• Scalability: Managing access control through the aws-auth ConfigMap becomes
increasingly challenging as the number of users and services grows. The new
API scales better by allowing access management through standard AWS
Identity and Access Management (IAM) tools.

• Reduced Operational Overhead: The API simplifies the management of access
controls by removing the need for manual updates to the ConfigMap, reducing
the risk of human error, and automating access provisioning through
Infrastructure as Code (IaC) tools like Terraform or CloudFormation.

3. Improved Visibility, Auditing, and Compliance

• Auditable and Traceable Changes: The Cluster Access Manager API integrates
with AWS CloudTrail, allowing you to track who made changes to access
configurations. This level of visibility is critical for organizations that need to
adhere to compliance frameworks like SOC 2, GDPR, or HIPAA.

• Centralized Management: Unlike the aws-auth ConfigMap, which is managed at
the Kubernetes level, the new API leverages AWS IAM’s centralized
management and auditing capabilities, providing a unified view of access
controls across your AWS environment.

4. Faster and Safer Access Provisioning

• No More Cluster Downtime: Errors in the aws-auth ConfigMap can accidentally
lock out users or admins from the cluster, requiring complex recovery processes.
The API-based approach is more resilient, reducing the risk of misconfigurations
causing downtime.

• Immediate Effect: Changes made via the API take effect immediately, whereas
updates to the aws-auth ConfigMap may require a delay or even restarting
components in some cases.

5. Future-Proofing and Alignment with AWS Best Practices

• Native Support in Kubernetes Versions: Starting from Kubernetes 1.23, the
Cluster Access Manager API is fully supported and designed to replace the aws-
auth ConfigMap method. This aligns with AWS’s roadmap and best practices for
EKS, ensuring your infrastructure remains compatible with future updates.

• Modern Approach for Pod Identity: When combined with IAM Roles for Service
Accounts (IRSA) or the new Pod Identity feature, the API supports a more
dynamic and secure model for assigning permissions to pods, making it easier to
implement least-privilege access.

Page 79

Internal Only - General

Impact:

The shift to using the Cluster Access Manager API instead of the aws-auth ConfigMap
impacts EKS RBAC and Service Accounts by simplifying access control management,
reducing the risk of misconfigurations, and enhancing security. It allows for more
granular, direct management of IAM permissions and Kubernetes roles, eliminating
manual ConfigMap edits and reducing operational overhead. For Service Accounts, it
better integrates with existing mechanisms like IAM Roles for Service Accounts (IRSA)
for secure pod access to AWS resources, making it easier to enforce least-privilege
principles. This transition improves scalability, auditing, and compliance, while providing
a future-proof solution aligned with AWS’s Kubernetes identity management roadmap.

Audit:

To check if the Cluster Access Manager API is active on your Amazon EKS cluster, you
can use the following AWS CLI command:
aws eks describe-cluster --name $CLUSTER_NAME --query
"cluster.accessConfig" --output json
Replace $CLUSTER_NAME with the name of your EKS cluster.
The command queries the cluster.accessConfig property, which indicates the
authentication mode of the cluster.
Possible Outputs:
If the output shows "authenticationmode": "API" or "authenticationmode":
"API_AND_CONFIG_MAP", it means the Cluster Access Manager API is enabled.
If it only shows "authenticationmode": "CONFIG_MAP", then the cluster is still using
the traditional aws-auth ConfigMap approach.

Remediation:

Log in to the AWS Management Console.
Navigate to Amazon EKS and select your EKS cluster.
Go to the Access tab and click on "Manage Access" in the "Access Configuration
section".
Under Cluster Authentication Mode for Cluster Access settings.

• Click EKS API to change cluster will source authenticated IAM
principals only from EKS access entry APIs.

• Click ConfigMap to change cluster will source authenticated IAM
principals only from the aws-auth ConfigMap.

• Note: EKS API and ConfigMap must be selected during Cluster creation and
cannot be changed once the Cluster is provisioned.

Default Value:

EKS API is selected by default during EKS Cluster creation but can be changed during
initial configuration

Page 80

Internal Only - General

References:

1. https://aws.amazon.com/blogs/containers/a-deep-dive-into-simplified-amazon-
eks-access-management-controls/

2. https://www.eksworkshop.com/docs/security/cluster-access-
management/understanding

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

4.8 Uninstall or Disable Unnecessary Services on
Enterprise Assets and Software
 Uninstall or disable unnecessary services on enterprise assets and software,
such as an unused file sharing service, web application module, or service
function.

 ● ●

v7

14.7 Enforce Access Control to Data through Automated
Tools
 Use an automated tool, such as host-based Data Loss Prevention, to enforce
access controls to data even when data is copied off a system.

 ●

https://aws.amazon.com/blogs/containers/a-deep-dive-into-simplified-amazon-eks-access-management-controls/
https://aws.amazon.com/blogs/containers/a-deep-dive-into-simplified-amazon-eks-access-management-controls/
https://www.eksworkshop.com/docs/security/cluster-access-management/understanding
https://www.eksworkshop.com/docs/security/cluster-access-management/understanding

Page 81

Internal Only - General

4.1.8 Limit use of the Bind, Impersonate and Escalate

permissions in the Kubernetes cluster (Manual)

Profile Applicability:

• Level 1

Description:

Cluster roles and roles with the impersonate, bind or escalate permissions should not
be granted unless strictly required. Each of these permissions allow a particular subject
to escalate their privileges beyond those explicitly granted by cluster administrators

Rationale:

The impersonate privilege allows a subject to impersonate other users gaining their
rights to the cluster. The bind privilege allows the subject to add a binding to a cluster
role or role which escalates their effective permissions in the cluster. The escalate
privilege allows a subject to modify cluster roles to which they are bound, increasing
their rights to that level.

Each of these permissions has the potential to allow for privilege escalation to cluster-
admin level.

Impact:

There are some cases where these permissions are required for cluster service
operation, and care should be taken before removing these permissions from system
service accounts.

Audit:

Review the users who have access to cluster roles or roles which provide the
impersonate, bind or escalate privileges.

Remediation:

Where possible, remove the impersonate, bind and escalate rights from subjects.

Default Value:

In a default kubeadm cluster, the system:masters group and clusterrole-aggregation-
controller service account have access to the escalate privilege. The system:masters
group also has access to bind and impersonate.

References:

1. https://www.impidio.com/blog/kubernetes-rbac-security-pitfalls
2. https://raesene.github.io/blog/2020/12/12/Escalating_Away/
3. https://raesene.github.io/blog/2021/01/16/Getting-Into-A-Bind-with-Kubernetes/

https://www.impidio.com/blog/kubernetes-rbac-security-pitfalls
https://raesene.github.io/blog/2020/12/12/Escalating_Away/
https://raesene.github.io/blog/2021/01/16/Getting-Into-A-Bind-with-Kubernetes/

Page 82

Internal Only - General

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

4.8 Uninstall or Disable Unnecessary Services on
Enterprise Assets and Software
 Uninstall or disable unnecessary services on enterprise assets and software,
such as an unused file sharing service, web application module, or service
function.

 ● ●

v7

14.7 Enforce Access Control to Data through Automated
Tools
 Use an automated tool, such as host-based Data Loss Prevention, to enforce
access controls to data even when data is copied off a system.

 ●

Page 83

Internal Only - General

4.2 Pod Security Standards

Pod Security Standards (PSS) are recommendations for securing deployed workloads
to reduce the risks of container breakout. There are a number of ways if implementing
PSS, including the built-in Pod Security Admission controller, or external policy control
systems which integrate with Kubernetes via validating and mutating webhooks.

The previous feature described in this document, pod security policy (preview), was
deprecated with version 1.21, and removed as of version 1.25. After pod security policy
(preview) is deprecated, you must disable the feature on any existing clusters using the
deprecated feature to perform future cluster upgrades and stay within Azure support.

Page 84

Internal Only - General

4.2.1 Minimize the admission of privileged containers (Automated)

Profile Applicability:

• Level 1

Description:

Do not generally permit containers to be run with the securityContext.privileged
flag set to true.

Rationale:

Privileged containers have access to all Linux Kernel capabilities and devices. A
container running with full privileges can do almost everything that the host can do. This
flag exists to allow special use-cases, like manipulating the network stack and
accessing devices.

There should be at least one admission control policy defined which does not permit
privileged containers.

If you need to run privileged containers, this should be defined in a separate policy and
you should carefully check to ensure that only limited service accounts and users are
given permission to use that policy.

Impact:

Pods defined with spec.containers[].securityContext.privileged: true,
spec.initContainers[].securityContext.privileged: true and
spec.ephemeralContainers[].securityContext.privileged: true will not be
permitted.

Page 85

Internal Only - General

Audit:

List the policies in use for each namespace in the cluster, ensure that each policy
disallows the admission of privileged containers.
Since manually searching through each pod's configuration might be tedious, especially
in environments with many pods, you can use a more automated approach with grep or
other command-line tools.
Here's an example of how you might approach this with a combination of kubectl, grep,
and shell scripting for a more automated solution:
kubectl get pods --all-namespaces -o json | jq -r '.items[] |
select(.spec.containers[].securityContext.privileged == true) |
.metadata.name'
OR
kubectl get pods --all-namespaces -o json | jq '.items[] |
select(.metadata.namespace != "kube-system" and
.spec.containers[]?.securityContext?.privileged == true) | {pod:
.metadata.name, namespace: .metadata.namespace, container:
.spec.containers[].name}'
When creating a Pod Security Policy, ["kube-system"] namespaces are excluded by
default.
This command uses jq, a command-line JSON processor, to parse the JSON output
from kubectl get pods and filter out pods where any container has the
securityContext.privileged flag set to true. Please note that you might need to adjust the
command depending on your specific requirements and the structure of your pod
specifications.

Remediation:

Add policies to each namespace in the cluster which has user workloads to restrict the
admission of privileged containers.
To enable PSA for a namespace in your cluster, set the pod-
security.kubernetes.io/enforce label with the policy value you want to enforce.
kubectl label --overwrite ns NAMESPACE pod-
security.kubernetes.io/enforce=restricted
The above command enforces the restricted policy for the NAMESPACE namespace.
You can also enable Pod Security Admission for all your namespaces. For example:
kubectl label --overwrite ns --all pod-
security.kubernetes.io/warn=baseline

Default Value:

By default, there are no restrictions on the creation of privileged containers.

References:

1. https://kubernetes.io/docs/concepts/security/pod-security-admission/
2. https://aws.github.io/aws-eks-best-practices/pods/#restrict-the-containers-that-

can-run-as-privileged

https://kubernetes.io/docs/concepts/security/pod-security-admission/
https://aws.github.io/aws-eks-best-practices/pods/#restrict-the-containers-that-can-run-as-privileged
https://aws.github.io/aws-eks-best-practices/pods/#restrict-the-containers-that-can-run-as-privileged

Page 86

Internal Only - General

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

5.4 Restrict Administrator Privileges to Dedicated
Administrator Accounts
 Restrict administrator privileges to dedicated administrator accounts on
enterprise assets. Conduct general computing activities, such as internet
browsing, email, and productivity suite use, from the user’s primary, non-privileged
account.

● ● ●

v7
4.3 Ensure the Use of Dedicated Administrative Accounts
 Ensure that all users with administrative account access use a dedicated or
secondary account for elevated activities. This account should only be used for
administrative activities and not internet browsing, email, or similar activities.

● ● ●

Page 87

Internal Only - General

4.2.2 Minimize the admission of containers wishing to share the

host process ID namespace (Automated)

Profile Applicability:

• Level 1

Description:

Do not generally permit containers to be run with the hostPID flag set to true.

Rationale:

A container running in the host's PID namespace can inspect processes running outside
the container. If the container also has access to ptrace capabilities this can be used to
escalate privileges outside of the container.

There should be at least one admission control policy defined which does not permit
containers to share the host PID namespace.

If you need to run containers which require hostPID, this should be defined in a
separate policy and you should carefully check to ensure that only limited service
accounts and users are given permission to use that policy.

Impact:

Pods defined with spec.hostPID: true will not be permitted unless they are run under
a specific policy.

Audit:

List the policies in use for each namespace in the cluster, ensure that each policy
disallows the admission of hostPID containers
Search for the hostPID Flag: In the YAML output, look for the hostPID setting under the
spec section to check if it is set to true.
kubectl get pods --all-namespaces -o json | jq -r '.items[] |
select(.spec.hostPID == true) |
"\(.metadata.namespace)/\(.metadata.name)"'
OR
kubectl get pods --all-namespaces -o json | jq '.items[] |
select(.metadata.namespace != "kube-system" and .spec.hostPID == true)
| {pod: .metadata.name, namespace: .metadata.namespace, container:
.spec.containers[].name}'
When creating a Pod Security Policy, ["kube-system"] namespaces are excluded by
default.
This command retrieves all pods across all namespaces in JSON format, then uses jq
to filter out those with the hostPID flag set to true, and finally formats the output to
show the namespace and name of each matching pod.

Page 88

Internal Only - General

Remediation:

Add policies to each namespace in the cluster which has user workloads to restrict the
admission of hostPID containers.

Default Value:

By default, there are no restrictions on the creation of hostPID containers.

References:

1. https://kubernetes.io/docs/concepts/security/pod-security-admission/

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

5.4 Restrict Administrator Privileges to Dedicated
Administrator Accounts
 Restrict administrator privileges to dedicated administrator accounts on
enterprise assets. Conduct general computing activities, such as internet
browsing, email, and productivity suite use, from the user’s primary, non-privileged
account.

● ● ●

v7
4.3 Ensure the Use of Dedicated Administrative Accounts
 Ensure that all users with administrative account access use a dedicated or
secondary account for elevated activities. This account should only be used for
administrative activities and not internet browsing, email, or similar activities.

● ● ●

https://kubernetes.io/docs/concepts/security/pod-security-admission/

Page 89

Internal Only - General

4.2.3 Minimize the admission of containers wishing to share the

host IPC namespace (Automated)

Profile Applicability:

• Level 1

Description:

Do not generally permit containers to be run with the hostIPC flag set to true.

Rationale:

A container running in the host's IPC namespace can use IPC to interact with processes
outside the container.

There should be at least one admission control policy defined which does not permit
containers to share the host IPC namespace.

If you need to run containers which require hostIPC, this should be defined in a
separate policy and you should carefully check to ensure that only limited service
accounts and users are given permission to use that policy.

Impact:

Pods defined with spec.hostIPC: true will not be permitted unless they are run under
a specific policy.

Audit:

List the policies in use for each namespace in the cluster, ensure that each policy
disallows the admission of hostIPC containers
Search for the hostIPC Flag: In the YAML output, look for the hostIPC setting under the
spec section to check if it is set to true.
kubectl get pods --all-namespaces -o json | jq -r '.items[] |
select(.spec.hostIPC == true) |
"\(.metadata.namespace)/\(.metadata.name)"'
OR
kubectl get pods --all-namespaces -o json | jq '.items[] |
select(.metadata.namespace != "kube-system" and .spec.hostIPC == true)
| {pod: .metadata.name, namespace: .metadata.namespace, container:
.spec.containers[].name}'
When creating a Pod Security Policy, ["kube-system"] namespaces are excluded by
default.
This command retrieves all pods across all namespaces in JSON format, then uses jq
to filter out those with the hostIPC flag set to true, and finally formats the output to
show the namespace and name of each matching pod.

Page 90

Internal Only - General

Remediation:

Add policies to each namespace in the cluster which has user workloads to restrict the
admission of hostIPC containers.

Default Value:

By default, there are no restrictions on the creation of hostIPC containers.

References:

1. https://kubernetes.io/docs/concepts/security/pod-security-admission/

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

5.4 Restrict Administrator Privileges to Dedicated
Administrator Accounts
 Restrict administrator privileges to dedicated administrator accounts on
enterprise assets. Conduct general computing activities, such as internet
browsing, email, and productivity suite use, from the user’s primary, non-privileged
account.

● ● ●

v7
4.3 Ensure the Use of Dedicated Administrative Accounts
 Ensure that all users with administrative account access use a dedicated or
secondary account for elevated activities. This account should only be used for
administrative activities and not internet browsing, email, or similar activities.

● ● ●

https://kubernetes.io/docs/concepts/security/pod-security-admission/

Page 91

Internal Only - General

4.2.4 Minimize the admission of containers wishing to share the

host network namespace (Automated)

Profile Applicability:

• Level 1

Description:

Do not generally permit containers to be run with the hostNetwork flag set to true.

Rationale:

A container running in the host's network namespace could access the local loopback
device, and could access network traffic to and from other pods.

There should be at least one admission control policy defined which does not permit
containers to share the host network namespace.

If you need to run containers which require access to the host's network namespaces,
this should be defined in a separate policy and you should carefully check to ensure that
only limited service accounts and users are given permission to use that policy.

Impact:

Pods defined with spec.hostNetwork: true will not be permitted unless they are run
under a specific policy.

Audit:

List the policies in use for each namespace in the cluster, ensure that each policy
disallows the admission of hostNetwork containers
Given that manually checking each pod can be time-consuming, especially in large
environments, you can use a more automated approach to filter out pods where
hostNetwork is set to true. Here’s a command using kubectl and jq:
kubectl get pods --all-namespaces -o json | jq -r '.items[] |
select(.spec.hostNetwork == true) |
"\(.metadata.namespace)/\(.metadata.name)"'
OR
kubectl get pods --all-namespaces -o json | jq '.items[] |
select(.metadata.namespace != "kube-system" and .spec.hostNetwork ==
true) | {pod: .metadata.name, namespace: .metadata.namespace,
container: .spec.containers[].name}'
When creating a Pod Security Policy, ["kube-system"] namespaces are excluded by
default.
This command retrieves all pods across all namespaces in JSON format, then uses jq
to filter out those with the hostNetwork flag set to true, and finally formats the output
to show the namespace and name of each matching pod.

Page 92

Internal Only - General

Remediation:

Add policies to each namespace in the cluster which has user workloads to restrict the
admission of hostNetwork containers.

Default Value:

By default, there are no restrictions on the creation of hostNetwork containers.

References:

1. https://kubernetes.io/docs/concepts/security/pod-security-admission/

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

5.4 Restrict Administrator Privileges to Dedicated
Administrator Accounts
 Restrict administrator privileges to dedicated administrator accounts on
enterprise assets. Conduct general computing activities, such as internet
browsing, email, and productivity suite use, from the user’s primary, non-privileged
account.

● ● ●

v7
4.3 Ensure the Use of Dedicated Administrative Accounts
 Ensure that all users with administrative account access use a dedicated or
secondary account for elevated activities. This account should only be used for
administrative activities and not internet browsing, email, or similar activities.

● ● ●

https://kubernetes.io/docs/concepts/security/pod-security-admission/

Page 93

Internal Only - General

4.2.5 Minimize the admission of containers with

allowPrivilegeEscalation (Automated)

Profile Applicability:

• Level 1

Description:

Do not generally permit containers to be run with the allowPrivilegeEscalation flag
set to true. Allowing this right can lead to a process running a container getting more
rights than it started with.

It's important to note that these rights are still constrained by the overall container
sandbox, and this setting does not relate to the use of privileged containers.

Rationale:

A container running with the allowPrivilegeEscalation flag set to true may have
processes that can gain more privileges than their parent.

There should be at least one admission control policy defined which does not permit
containers to allow privilege escalation. The option exists (and is defaulted to true) to
permit setuid binaries to run.

If you have need to run containers which use setuid binaries or require privilege
escalation, this should be defined in a separate policy and you should carefully check to
ensure that only limited service accounts and users are given permission to use that
policy.

Impact:

Pods defined with spec.allowPrivilegeEscalation: true will not be permitted
unless they are run under a specific policy.

Page 94

Internal Only - General

Audit:

List the policies in use for each namespace in the cluster, ensure that each policy
disallows the admission of containers which allow privilege escalation.
This command gets all pods across all namespaces, outputs their details in JSON
format, and uses jq to parse and filter the output for containers with
allowPrivilegeEscalation set to true.
kubectl get pods --all-namespaces -o json | jq -r '.items[] |
select(any(.spec.containers[];
.securityContext.allowPrivilegeEscalation == true)) |
"\(.metadata.namespace)/\(.metadata.name)"'
OR
kubectl get pods --all-namespaces -o json | jq '.items[] |
select(.metadata.namespace != "kube-system" and .spec.containers[];
.securityContext.allowPrivilegeEscalation == true) | {pod:
.metadata.name, namespace: .metadata.namespace, container:
.spec.containers[].name}'
When creating a Pod Security Policy, ["kube-system"] namespaces are excluded by
default.
This command uses jq, a command-line JSON processor, to parse the JSON output
from kubectl get pods and filter out pods where any container has the
securityContext.privileged flag set to true. Please note that you might need to adjust the
command depending on your specific requirements and the structure of your pod
specifications.

Remediation:

Add policies to each namespace in the cluster which has user workloads to restrict the
admission of containers with .spec.allowPrivilegeEscalation set to true.

Default Value:

By default, there are no restrictions on contained process ability to escalate privileges,
within the context of the container.

References:

1. https://kubernetes.io/docs/concepts/security/pod-security-admission/

https://kubernetes.io/docs/concepts/security/pod-security-admission/

Page 95

Internal Only - General

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

5.4 Restrict Administrator Privileges to Dedicated
Administrator Accounts
 Restrict administrator privileges to dedicated administrator accounts on
enterprise assets. Conduct general computing activities, such as internet
browsing, email, and productivity suite use, from the user’s primary, non-privileged
account.

● ● ●

v7
4.3 Ensure the Use of Dedicated Administrative Accounts
 Ensure that all users with administrative account access use a dedicated or
secondary account for elevated activities. This account should only be used for
administrative activities and not internet browsing, email, or similar activities.

● ● ●

Page 96

Internal Only - General

4.3 CNI Plugin

Page 97

Internal Only - General

4.3.1 Ensure CNI plugin supports network policies. (Manual)

Profile Applicability:

• Level 1

Description:

There are a variety of CNI plugins available for Kubernetes. If the CNI in use does not
support Network Policies it may not be possible to effectively restrict traffic in the
cluster.

Rationale:

Kubernetes network policies are enforced by the CNI plugin in use. As such it is
important to ensure that the CNI plugin supports both Ingress and Egress network
policies.

Impact:

None.

Audit:

Review the documentation of CNI plugin in use by the cluster, and confirm that it
supports network policies.

Remediation:

As with RBAC policies, network policies should adhere to the policy of least privileged
access. Start by creating a deny all policy that restricts all inbound and outbound traffic
from a namespace or create a global policy using Calico.

Default Value:

This will depend on the CNI plugin in use.

References:

1. https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-
net/network-plugins/

2. https://aws.github.io/aws-eks-best-practices/network/

Additional Information:

One example here is Flannel (https://github.com/coreos/flannel) which does not support
Network policy unless Calico is also in use.

https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/network-plugins/
https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/network-plugins/
https://aws.github.io/aws-eks-best-practices/network/
https://github.com/coreos/flannel

Page 98

Internal Only - General

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8
7.4 Perform Automated Application Patch Management
 Perform application updates on enterprise assets through automated patch
management on a monthly, or more frequent, basis.

● ● ●

v7

18.4 Only Use Up-to-date And Trusted Third-Party
Components
 Only use up-to-date and trusted third-party components for the software
developed by the organization.

 ● ●

Page 99

Internal Only - General

4.3.2 Ensure that all Namespaces have Network Policies defined

(Automated)

Profile Applicability:

• Level 1

Description:

Use network policies to isolate traffic in your cluster network.

Rationale:

Running different applications on the same Kubernetes cluster creates a risk of one
compromised application attacking a neighboring application. Network segmentation is
important to ensure that containers can communicate only with those they are supposed
to. A network policy is a specification of how selections of pods are allowed to
communicate with each other and other network endpoints.

Once there is any Network Policy in a namespace selecting a particular pod, that pod
will reject any connections that are not allowed by any Network Policy. Other pods in the
namespace that are not selected by any Network Policy will continue to accept all
traffic"

Impact:

Once there is any Network Policy in a namespace selecting a particular pod, that pod
will reject any connections that are not allowed by any Network Policy. Other pods in the
namespace that are not selected by any Network Policy will continue to accept all
traffic"

Audit:

Run the below command and review the NetworkPolicy objects created in the cluster.

kubectl get networkpolicy --all-namespaces

Ensure that each namespace defined in the cluster has at least one Network Policy.

Remediation:

Follow the documentation and create NetworkPolicy objects as you need them.

Default Value:

By default, network policies are not created.

References:

1. https://kubernetes.io/docs/concepts/services-networking/networkpolicies/
2. https://octetz.com/posts/k8s-network-policy-apis

https://kubernetes.io/docs/concepts/services-networking/networkpolicies/
https://octetz.com/posts/k8s-network-policy-apis

Page 100

Internal Only - General

3. https://kubernetes.io/docs/tasks/configure-pod-container/declare-network-policy/

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8
4.4 Implement and Manage a Firewall on Servers
 Implement and manage a firewall on servers, where supported. Example
implementations include a virtual firewall, operating system firewall, or a third-
party firewall agent.

● ● ●

v7
14.1 Segment the Network Based on Sensitivity
 Segment the network based on the label or classification level of the
information stored on the servers, locate all sensitive information on separated
Virtual Local Area Networks (VLANs).

 ● ●

v7
14.2 Enable Firewall Filtering Between VLANs
 Enable firewall filtering between VLANs to ensure that only authorized
systems are able to communicate with other systems necessary to fulfill their
specific responsibilities.

 ● ●

https://kubernetes.io/docs/tasks/configure-pod-container/declare-network-policy/

Page 101

Internal Only - General

4.4 Secrets Management

Page 102

Internal Only - General

4.4.1 Prefer using secrets as files over secrets as environment

variables (Automated)

Profile Applicability:

• Level 1

Description:

Kubernetes supports mounting secrets as data volumes or as environment variables.
Minimize the use of environment variable secrets.

Rationale:

It is reasonably common for application code to log out its environment (particularly in
the event of an error). This will include any secret values passed in as environment
variables, so secrets can easily be exposed to any user or entity who has access to the
logs.

Impact:

Application code which expects to read secrets in the form of environment variables
would need modification

Audit:

Run the following command to find references to objects which use environment
variables defined from secrets.

kubectl get all -o jsonpath='{range .items[?(@..secretKeyRef)]} {.kind}
{.metadata.name} {"\n"}{end}' -A

Remediation:

If possible, rewrite application code to read secrets from mounted secret files, rather
than from environment variables.

Default Value:

By default, secrets are not defined

References:

1. https://kubernetes.io/docs/concepts/configuration/secret/#using-secrets

Additional Information:

Mounting secrets as volumes has the additional benefit that secret values can be
updated without restarting the pod

https://kubernetes.io/docs/concepts/configuration/secret/#using-secrets

Page 103

Internal Only - General

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8
3.10 Encrypt Sensitive Data in Transit
 Encrypt sensitive data in transit. Example implementations can include:
Transport Layer Security (TLS) and Open Secure Shell (OpenSSH).

 ● ●

v7 14.4 Encrypt All Sensitive Information in Transit
 Encrypt all sensitive information in transit.

 ● ●

v7
14.8 Encrypt Sensitive Information at Rest
 Encrypt all sensitive information at rest using a tool that requires a secondary
authentication mechanism not integrated into the operating system, in order to
access the information.

 ●

Page 104

Internal Only - General

4.4.2 Consider external secret storage (Manual)

Profile Applicability:

• Level 1

Description:

Consider the use of an external secrets storage and management system, instead of
using Kubernetes Secrets directly, if you have more complex secret management
needs. Ensure the solution requires authentication to access secrets, has auditing of
access to and use of secrets, and encrypts secrets. Some solutions also make it easier
to rotate secrets.

Rationale:

Kubernetes supports secrets as first-class objects, but care needs to be taken to ensure
that access to secrets is carefully limited. Using an external secrets provider can ease
the management of access to secrets, especially where secrests are used across both
Kubernetes and non-Kubernetes environments.

Impact:

None

Audit:

Review your secrets management implementation.

Remediation:

Refer to the secrets management options offered by your cloud provider or a third-party
secrets management solution.

Default Value:

By default, no external secret management is configured.

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

3.11 Encrypt Sensitive Data at Rest
 Encrypt sensitive data at rest on servers, applications, and databases containing
sensitive data. Storage-layer encryption, also known as server-side encryption,
meets the minimum requirement of this Safeguard. Additional encryption methods
may include application-layer encryption, also known as client-side encryption,
where access to the data storage device(s) does not permit access to the plain-text
data.

 ● ●

Page 105

Internal Only - General

Controls
Version

Control IG 1 IG 2 IG 3

v7
14.8 Encrypt Sensitive Information at Rest
 Encrypt all sensitive information at rest using a tool that requires a secondary
authentication mechanism not integrated into the operating system, in order to
access the information.

 ●

Page 106

Internal Only - General

4.5 General Policies

These policies relate to general cluster management topics, like namespace best
practices and policies applied to pod objects in the cluster.

Page 107

Internal Only - General

4.5.1 Create administrative boundaries between resources using

namespaces (Manual)

Profile Applicability:

• Level 1

Description:

Use namespaces to isolate your Kubernetes objects.

Rationale:

Limiting the scope of user permissions can reduce the impact of mistakes or malicious
activities. A Kubernetes namespace allows you to partition created resources into
logically named groups. Resources created in one namespace can be hidden from
other namespaces. By default, each resource created by a user in an Amazon EKS
cluster runs in a default namespace, called default. You can create additional
namespaces and attach resources and users to them. You can use Kubernetes
Authorization plugins to create policies that segregate access to namespace resources
between different users.

Impact:

You need to switch between namespaces for administration.

Audit:

Run the below command and review the namespaces created in the cluster.

kubectl get namespaces

Ensure that these namespaces are the ones you need and are adequately administered
as per your requirements.

Remediation:

Follow the documentation and create namespaces for objects in your deployment as
you need them.

Default Value:

By default, Kubernetes starts with four initial namespaces:

1. default - The default namespace for objects with no other namespace
2. kube-system - The namespace for objects created by the Kubernetes system
3. kube-public - The namespace for public-readable ConfigMap
4. kube-node-lease - The namespace for associated lease object for each node

Page 108

Internal Only - General

References:

1. https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
2. http://blog.kubernetes.io/2016/08/security-best-practices-kubernetes-

deployment.html

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

12.8 Establish and Maintain Dedicated Computing
Resources for All Administrative Work
 Establish and maintain dedicated computing resources, either physically or
logically separated, for all administrative tasks or tasks requiring administrative
access. The computing resources should be segmented from the enterprise's
primary network and not be allowed internet access.

 ●

v7 12.1 Maintain an Inventory of Network Boundaries
 Maintain an up-to-date inventory of all of the organization's network boundaries. ● ● ●

https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
http://blog.kubernetes.io/2016/08/security-best-practices-kubernetes-deployment.html
http://blog.kubernetes.io/2016/08/security-best-practices-kubernetes-deployment.html

Page 109

Internal Only - General

4.5.2 The default namespace should not be used (Automated)

Profile Applicability:

• Level 1

Description:

Kubernetes provides a default namespace, where objects are placed if no namespace
is specified for them. Placing objects in this namespace makes application of RBAC and
other controls more difficult.

Rationale:

Resources in a Kubernetes cluster should be segregated by namespace, to allow for
security controls to be applied at that level and to make it easier to manage resources.

Impact:

None

Audit:

Run this command to list objects in default namespace

kubectl get $(kubectl api-resources --verbs=list --namespaced=true -o name |
paste -sd, -) --ignore-not-found -n default

The only entries there should be system managed resources such as the kubernetes
service
OR

kubectl get pods -n default

Returning No resources found in default namespace.

Remediation:

Ensure that namespaces are created to allow for appropriate segregation of Kubernetes
resources and that all new resources are created in a specific namespace.

Default Value:

Unless a namespace is specific on object creation, the default namespace will be
used

Page 110

Internal Only - General

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

16.7 Use Standard Hardening Configuration Templates for
Application Infrastructure
 Use standard, industry-recommended hardening configuration templates for
application infrastructure components. This includes underlying servers, databases,
and web servers, and applies to cloud containers, Platform as a Service (PaaS)
components, and SaaS components. Do not allow in-house developed software to
weaken configuration hardening.

 ● ●

v7
5.1 Establish Secure Configurations
 Maintain documented, standard security configuration standards for all
authorized operating systems and software.

● ● ●

5 Managed services

This section consists of security recommendations for the Amazon EKS. These
recommendations are applicable for configurations that Amazon EKS customers own
and manage.

Page 111

Internal Only - General

5.1 Image Registry and Image Scanning

This section contains recommendations relating to container image registries and
securing images in those registries, such as Amazon Elastic Container Registry (ECR).

Page 112

Internal Only - General

5.1.1 Ensure Image Vulnerability Scanning using Amazon ECR

image scanning or a third party provider (Automated)

Profile Applicability:

• Level 1

Description:

Scan images being deployed to Amazon EKS for vulnerabilities.

Rationale:

Vulnerabilities in software packages can be exploited by hackers or malicious users to
obtain unauthorized access to local cloud resources. Amazon ECR and other third party
products allow images to be scanned for known vulnerabilities.

Impact:

If you are utilizing AWS ECR

The following are common image scan failures. You can view errors like this in the
Amazon ECR console by displaying the image details or through the API or AWS CLI by
using the DescribeImageScanFindings API.

UnsupportedImageError You may get an UnsupportedImageError error when
attempting to scan an image that was built using an operating system that Amazon ECR
doesn't support image scanning for. Amazon ECR supports package vulnerability
scanning for major versions of Amazon Linux, Amazon Linux 2, Debian, Ubuntu,
CentOS, Oracle Linux, Alpine, and RHEL Linux distributions. Amazon ECR does not
support scanning images built from the Docker scratch image.

An UNDEFINED severity level is returned You may receive a scan finding that has a
severity level of UNDEFINED. The following are the common causes for this:

The vulnerability was not assigned a priority by the CVE source.

The vulnerability was assigned a priority that Amazon ECR did not recognize.

To determine the severity and description of a vulnerability, you can view the CVE
directly from the source.

Audit:

Please follow AWS ECS or your 3rd party image scanning provider's guidelines for
enabling Image Scanning.

Page 113

Internal Only - General

aws ecr describe-repositories --repository-names $REPO_NAME --region
$REGION_CODE

Remediation:

To utilize AWS ECR for Image scanning please follow the steps below:
To create a repository configured for scan on push (AWS CLI)

aws ecr create-repository --repository-name $REPO_NAME --image-scanning-
configuration scanOnPush=true --region $REGION_CODE

To edit the settings of an existing repository (AWS CLI)

aws ecr put-image-scanning-configuration --repository-name $REPO_NAME --
image-scanning-configuration scanOnPush=true --region $REGION_CODE

Use the following steps to start a manual image scan using the AWS Management
Console.

1. Open the Amazon ECR console at
https://console.aws.amazon.com/ecr/repositories.

2. From the navigation bar, choose the Region to create your repository in.
3. In the navigation pane, choose Repositories.
4. On the Repositories page, choose the repository that contains the image to scan.
5. On the Images page, select the image to scan and then choose Scan.

Default Value:

Images are not scanned by Default.

References:

1. https://docs.aws.amazon.com/AmazonECR/latest/userguide/image-
scanning.html

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

7.5 Perform Automated Vulnerability Scans of Internal
Enterprise Assets
 Perform automated vulnerability scans of internal enterprise assets on a
quarterly, or more frequent, basis. Conduct both authenticated and
unauthenticated scans, using a SCAP-compliant vulnerability scanning tool.

 ● ●

v8

7.6 Perform Automated Vulnerability Scans of Externally-
Exposed Enterprise Assets
 Perform automated vulnerability scans of externally-exposed enterprise assets
using a SCAP-compliant vulnerability scanning tool. Perform scans on a monthly,
or more frequent, basis.

 ● ●

https://console.aws.amazon.com/ecr/repositories
https://docs.aws.amazon.com/AmazonECR/latest/userguide/image-scanning.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/image-scanning.html

Page 114

Internal Only - General

Controls
Version

Control IG 1 IG 2 IG 3

v7
3.1 Run Automated Vulnerability Scanning Tools
 Utilize an up-to-date SCAP-compliant vulnerability scanning tool to
automatically scan all systems on the network on a weekly or more frequent basis
to identify all potential vulnerabilities on the organization's systems.

 ● ●

v7
3.2 Perform Authenticated Vulnerability Scanning
 Perform authenticated vulnerability scanning with agents running locally on
each system or with remote scanners that are configured with elevated rights on
the system being tested.

 ● ●

Page 115

Internal Only - General

5.1.2 Minimize user access to Amazon ECR (Manual)

Profile Applicability:

• Level 1

Description:

Restrict user access to Amazon ECR, limiting interaction with build images to only
authorized personnel and service accounts.

Rationale:

Weak access control to Amazon ECR may allow malicious users to replace built images
with vulnerable containers.

Impact:

Care should be taken not to remove access to Amazon ECR for accounts that require
this for their operation.

Audit:

Remediation:

Before you use IAM to manage access to Amazon ECR, you should understand what
IAM features are available to use with Amazon ECR. To get a high-level view of how
Amazon ECR and other AWS services work with IAM, see AWS Services That Work
with IAM in the IAM User Guide.
Topics

• Amazon ECR Identity-Based Policies
• Amazon ECR Resource-Based Policies
• Authorization Based on Amazon ECR Tags
• Amazon ECR IAM Roles

Page 116

Internal Only - General

Amazon ECR Identity-Based Policies
With IAM identity-based policies, you can specify allowed or denied actions and
resources as well as the conditions under which actions are allowed or denied. Amazon
ECR supports specific actions, resources, and condition keys. To learn about all of the
elements that you use in a JSON policy, see IAM JSON Policy Elements Reference in
the IAM User Guide.
Actions
The Action element of an IAM identity-based policy describes the specific action or
actions that will be allowed or denied by the policy. Policy actions usually have the
same name as the associated AWS API operation. The action is used in a policy to
grant permissions to perform the associated operation.
Policy actions in Amazon ECR use the following prefix before the action: ecr:. For
example, to grant someone permission to create an Amazon ECR repository with the
Amazon ECR CreateRepository API operation, you include the ecr:CreateRepository
action in their policy. Policy statements must include either an Action or NotAction
element. Amazon ECR defines its own set of actions that describe tasks that you can
perform with this service.
To specify multiple actions in a single statement, separate them with commas as
follows:
"Action": ["ecr:action1", "ecr:action2"
You can specify multiple actions using wildcards (*). For example, to specify all actions
that begin with the word Describe, include the following action:
"Action": "ecr:Describe*"
To see a list of Amazon ECR actions, see Actions, Resources, and Condition Keys for
Amazon Elastic Container Registry in the IAM User Guide.
Resources
The Resource element specifies the object or objects to which the action applies.
Statements must include either a Resource or a NotResource element. You specify a
resource using an ARN or using the wildcard (*) to indicate that the statement applies to
all resources.
An Amazon ECR repository resource has the following ARN:
arn:${Partition}:ecr:${Region}:${Account}:repository/${Repository-
name}
For more information about the format of ARNs, see Amazon Resource Names (ARNs)
and AWS Service Namespaces.
For example, to specify the my-repo repository in the us-east-1 Region in your
statement, use the following ARN:
"Resource": "arn:aws:ecr:us-east-1:123456789012:repository/my-repo"
To specify all repositories that belong to a specific account, use the wildcard (*):
"Resource": "arn:aws:ecr:us-east-1:123456789012:repository/*"
To specify multiple resources in a single statement, separate the ARNs with commas.
"Resource": ["resource1", "resource2"
To see a list of Amazon ECR resource types and their ARNs, see Resources Defined
by Amazon Elastic Container Registry in the IAM User Guide. To learn with which
actions you can specify the ARN of each resource, see Actions Defined by Amazon
Elastic Container Registry.

Page 117

Internal Only - General

Condition Keys
The Condition element (or Condition block) lets you specify conditions in which a
statement is in effect. The Condition element is optional. You can build conditional
expressions that use condition operators, such as equals or less than, to match the
condition in the policy with values in the request.
If you specify multiple Condition elements in a statement, or multiple keys in a single
Condition element, AWS evaluates them using a logical AND operation. If you specify
multiple values for a single condition key, AWS evaluates the condition using a logical
OR operation. All of the conditions must be met before the statement's permissions are
granted.
You can also use placeholder variables when you specify conditions. For example, you
can grant an IAM user permission to access a resource only if it is tagged with their IAM
user name. For more information, see IAM Policy Elements: Variables and Tags in the
IAM User Guide.
Amazon ECR defines its own set of condition keys and also supports using some global
condition keys. To see all AWS global condition keys, see AWS Global Condition
Context Keys in the IAM User Guide.
Most Amazon ECR actions support the aws:ResourceTag and ecr:ResourceTag
condition keys. For more information, see Using Tag-Based Access Control.
To see a list of Amazon ECR condition keys, see Condition Keys Defined by Amazon
Elastic Container Registry in the IAM User Guide. To learn with which actions and
resources you can use a condition key, see Actions Defined by Amazon Elastic
Container Registry.

References:

1. https://docs.aws.amazon.com/AmazonECR/latest/userguide/image-
scanning.html#scanning-repository

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

5.4 Restrict Administrator Privileges to Dedicated
Administrator Accounts
 Restrict administrator privileges to dedicated administrator accounts on
enterprise assets. Conduct general computing activities, such as internet
browsing, email, and productivity suite use, from the user’s primary, non-privileged
account.

● ● ●

v7
4.3 Ensure the Use of Dedicated Administrative Accounts
 Ensure that all users with administrative account access use a dedicated or
secondary account for elevated activities. This account should only be used for
administrative activities and not internet browsing, email, or similar activities.

● ● ●

https://docs.aws.amazon.com/AmazonECR/latest/userguide/image-scanning.html#scanning-repository
https://docs.aws.amazon.com/AmazonECR/latest/userguide/image-scanning.html#scanning-repository

Page 118

Internal Only - General

5.1.3 Minimize cluster access to read-only for Amazon ECR

(Manual)

Profile Applicability:

• Level 1

Description:

Configure the Cluster Service Account with Storage Object Viewer Role to only allow
read-only access to Amazon ECR.

Rationale:

The Cluster Service Account does not require administrative access to Amazon ECR,
only requiring pull access to containers to deploy onto Amazon EKS. Restricting
permissions follows the principles of least privilege and prevents credentials from being
abused beyond the required role.

Impact:

A separate dedicated service account may be required for use by build servers and
other robot users pushing or managing container images.

Audit:

Review AWS ECS worker node IAM role (NodeInstanceRole) IAM Policy Permissions to
verify that they are set and the minimum required level.
If utilizing a 3rd party tool to scan images utilize the minimum required permission level
required to interact with the cluster - generally this should be read-only.

Remediation:

You can use your Amazon ECR images with Amazon EKS, but you need to satisfy the
following prerequisites.
The Amazon EKS worker node IAM role (NodeInstanceRole) that you use with your
worker nodes must possess the following IAM policy permissions for Amazon ECR.

Page 119

Internal Only - General

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecr:BatchCheckLayerAvailability",
 "ecr:BatchGetImage",
 "ecr:GetDownloadUrlForLayer",
 "ecr:GetAuthorizationToken"
],
 "Resource": "*"
 }
]
}

Default Value:

If you used eksctl or the AWS CloudFormation templates in Getting Started with
Amazon EKS to create your cluster and worker node groups, these IAM permissions
are applied to your worker node IAM role by default.

References:

1. https://docs.aws.amazon.com/AmazonECR/latest/userguide/ECR_on_EKS.html

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

5.4 Restrict Administrator Privileges to Dedicated
Administrator Accounts
 Restrict administrator privileges to dedicated administrator accounts on
enterprise assets. Conduct general computing activities, such as internet
browsing, email, and productivity suite use, from the user’s primary, non-privileged
account.

● ● ●

v7
4.3 Ensure the Use of Dedicated Administrative Accounts
 Ensure that all users with administrative account access use a dedicated or
secondary account for elevated activities. This account should only be used for
administrative activities and not internet browsing, email, or similar activities.

● ● ●

https://docs.aws.amazon.com/AmazonECR/latest/userguide/ECR_on_EKS.html

Page 120

Internal Only - General

5.1.4 Minimize Container Registries to only those approved

(Manual)

Profile Applicability:

• Level 1

Description:

Use approved container registries.

Rationale:

Allowing unrestricted access to external container registries provides the opportunity for
malicious or unapproved containers to be deployed into the cluster. Allowlisting only
approved container registries reduces this risk.

Impact:

All container images to be deployed to the cluster must be hosted within an approved
container image registry.

Audit:

Remediation:

To minimize AWS ECR container registries to only those approved, you can follow
these steps:

1. Define your approval criteria: Determine the criteria that containers must meet to
be considered approved. This can include factors such as security, compliance,
compatibility, and other requirements.

2. Identify all existing ECR registries: Identify all ECR registries that are currently
being used in your organization.

3. Evaluate ECR registries against approval criteria: Evaluate each ECR registry
against your approval criteria to determine whether it should be approved or not.
This can be done by reviewing the registry settings and configuration, as well as
conducting security assessments and vulnerability scans.

4. Establish policies and procedures: Establish policies and procedures that outline
how ECR registries will be approved, maintained, and monitored. This should
include guidelines for developers to follow when selecting a registry for their
container images.

5. Implement access controls: Implement access controls to ensure that only
approved ECR registries are used to store and distribute container images. This
can be done by setting up IAM policies and roles that restrict access to
unapproved registries or create a whitelist of approved registries.

6. Monitor and review: Continuously monitor and review the use of ECR registries
to ensure that they continue to meet your approval criteria. This can include

Page 121

Internal Only - General

regularly reviewing access logs, scanning for vulnerabilities, and conducting
periodic audits.

By following these steps, you can minimize AWS ECR container registries to only those
approved, which can help to improve security, reduce complexity, and streamline
container management in your organization. Additionally, AWS provides several tools
and services that can help you manage your ECR registries, such as AWS Config, AWS
CloudFormation, and AWS Identity and Access Management (IAM).

Default Value:

Container registries are not restricted by default and Kubernetes assumes your default
CR is Docker Hub.

References:

1. https://aws.amazon.com/blogs/opensource/using-open-policy-agent-on-amazon-
eks/

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8
2.5 Allowlist Authorized Software
 Use technical controls, such as application allowlisting, to ensure that only
authorized software can execute or be accessed. Reassess bi-annually, or more
frequently.

 ● ●

v7
5.3 Securely Store Master Images
 Store the master images and templates on securely configured servers,
validated with integrity monitoring tools, to ensure that only authorized changes
to the images are possible.

 ● ●

v7
13.4 Only Allow Access to Authorized Cloud Storage or
Email Providers
 Only allow access to authorized cloud storage or email providers.

 ● ●

https://aws.amazon.com/blogs/opensource/using-open-policy-agent-on-amazon-eks/
https://aws.amazon.com/blogs/opensource/using-open-policy-agent-on-amazon-eks/

Page 122

Internal Only - General

5.2 Identity and Access Management (IAM)

This section contains recommendations relating to using AWS IAM with Amazon EKS.

Page 123

Internal Only - General

5.2.1 Prefer using dedicated EKS Service Accounts (Automated)

Profile Applicability:

• Level 1

Description:

Kubernetes workloads should not use cluster node service accounts to authenticate to
Amazon EKS APIs. Each Kubernetes workload that needs to authenticate to other AWS
services using AWS IAM should be provisioned with a dedicated Service account.

Rationale:

Manual approaches for authenticating Kubernetes workloads running on Amazon EKS
against AWS APIs are: storing service account keys as a Kubernetes secret (which
introduces manual key rotation and potential for key compromise); or use of the
underlying nodes' IAM Service account, which violates the principle of least privilege on
a multi-tenanted node, when one pod needs to have access to a service, but every
other pod on the node that uses the Service account does not.

Audit:

For each namespace in the cluster, review the rights assigned to the default service
account and ensure that it has no roles or cluster roles bound to it apart from the
defaults.
Additionally ensure that the automountServiceAccountToken: false setting is in place for
each default service account.

Remediation:

With IAM roles for service accounts on Amazon EKS clusters, you can associate an
IAM role with a Kubernetes service account. This service account can then provide
AWS permissions to the containers in any pod that uses that service account. With this
feature, you no longer need to provide extended permissions to the worker node IAM
role so that pods on that node can call AWS APIs.
Applications must sign their AWS API requests with AWS credentials. This feature
provides a strategy for managing credentials for your applications, similar to the way
that Amazon EC2 instance profiles provide credentials to Amazon EC2 instances.
Instead of creating and distributing your AWS credentials to the containers or using the
Amazon EC2 instance’s role, you can associate an IAM role with a Kubernetes service
account. The applications in the pod’s containers can then use an AWS SDK or the
AWS CLI to make API requests to authorized AWS services.
The IAM roles for service accounts feature provides the following benefits:

• Least privilege — By using the IAM roles for service accounts feature, you no
longer need to provide extended permissions to the worker node IAM role so that
pods on that node can call AWS APIs. You can scope IAM permissions to a
service account, and only pods that use that service account have access to

Page 124

Internal Only - General

those permissions. This feature also eliminates the need for third-party solutions
such as kiam or kube2iam.

• Credential isolation — A container can only retrieve credentials for the IAM role
that is associated with the service account to which it belongs. A container never
has access to credentials that are intended for another container that belongs to
another pod.

• Audit-ability — Access and event logging is available through CloudTrail to help
ensure retrospective auditing.

To get started, see list text hereEnabling IAM roles for service accounts on your cluster.
For an end-to-end walkthrough using eksctl, see Walkthrough: Updating a DaemonSet
to use IAM for service accounts.

References:

1. https://docs.aws.amazon.com/eks/latest/userguide/iam-roles-for-service-
accounts.html

2. https://docs.aws.amazon.com/eks/latest/userguide/iam-roles-for-service-
accounts-cni-walkthrough.html

3. https://aws.github.io/aws-eks-best-practices/security/docs/iam/#scope-the-iam-
role-trust-policy-for-irsa-to-the-service-account-name

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

12.8 Establish and Maintain Dedicated Computing
Resources for All Administrative Work
 Establish and maintain dedicated computing resources, either physically or
logically separated, for all administrative tasks or tasks requiring administrative
access. The computing resources should be segmented from the enterprise's
primary network and not be allowed internet access.

 ●

v7
4.3 Ensure the Use of Dedicated Administrative Accounts
 Ensure that all users with administrative account access use a dedicated or
secondary account for elevated activities. This account should only be used for
administrative activities and not internet browsing, email, or similar activities.

● ● ●

https://docs.aws.amazon.com/eks/latest/userguide/iam-roles-for-service-accounts.html
https://docs.aws.amazon.com/eks/latest/userguide/iam-roles-for-service-accounts.html
https://docs.aws.amazon.com/eks/latest/userguide/iam-roles-for-service-accounts-cni-walkthrough.html
https://docs.aws.amazon.com/eks/latest/userguide/iam-roles-for-service-accounts-cni-walkthrough.html
https://aws.github.io/aws-eks-best-practices/security/docs/iam/#scope-the-iam-role-trust-policy-for-irsa-to-the-service-account-name
https://aws.github.io/aws-eks-best-practices/security/docs/iam/#scope-the-iam-role-trust-policy-for-irsa-to-the-service-account-name

Page 125

Internal Only - General

5.3 AWS EKS Key Management Service

This section contains recommendations relating to using AWS EKS Key Management.

Page 126

Internal Only - General

5.3.1 Ensure Kubernetes Secrets are encrypted using Customer

Master Keys (CMKs) managed in AWS KMS (Manual)

Profile Applicability:

• Level 1

Description:

Encrypt Kubernetes secrets, stored in etcd, using secrets encryption feature during
Amazon EKS cluster creation.

Rationale:

Kubernetes can store secrets that pods can access via a mounted volume. Today,
Kubernetes secrets are stored with Base64 encoding, but encrypting is the
recommended approach. Amazon EKS clusters version 1.13 and higher support the
capability of encrypting your Kubernetes secrets using AWS Key Management Service
(KMS) Customer Managed Keys (CMK). The only requirement is to enable the
encryption provider support during EKS cluster creation.

Use AWS Key Management Service (KMS) keys to provide envelope encryption of
Kubernetes secrets stored in Amazon EKS. Implementing envelope encryption is
considered a security best practice for applications that store sensitive data and is part
of a defense in depth security strategy.

Application-layer Secrets Encryption provides an additional layer of security for sensitive
data, such as user defined Secrets and Secrets required for the operation of the cluster,
such as service account keys, which are all stored in etcd.

Using this functionality, you can use a key, that you manage in AWS KMS, to encrypt
data at the application layer. This protects against attackers in the event that they
manage to gain access to etcd.

Audit:

For Amazon EKS clusters with Secrets Encryption enabled, run the AWS CLI
command:

aws eks describe-cluster --name=<cluster-name>

From the output of the command, search if the following configuration exist with valid
AWS keyArn :

Page 127

Internal Only - General

"encryptionConfig": [
 {
 "provider": {
 "keyArn": "string"
 },
 "resources": ["string"]
 }
],

Remediation:

This process can only be performed during Cluster Creation.
Enable 'Secrets Encryption' during Amazon EKS cluster creation as described in the
links within the 'References' section.

Default Value:

By default secrets created using the Kubernetes API are stored in tmpfs and are
encrypted at rest.

References:

1. https://aws.amazon.com/about-aws/whats-new/2020/03/amazon-eks-adds-
envelope-encryption-for-secrets-with-aws-kms/

2. https://docs.aws.amazon.com/eks/latest/APIReference/API_DescribeCluster.html

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

3.11 Encrypt Sensitive Data at Rest
 Encrypt sensitive data at rest on servers, applications, and databases containing
sensitive data. Storage-layer encryption, also known as server-side encryption,
meets the minimum requirement of this Safeguard. Additional encryption methods
may include application-layer encryption, also known as client-side encryption,
where access to the data storage device(s) does not permit access to the plain-text
data.

 ● ●

v7
14.8 Encrypt Sensitive Information at Rest
 Encrypt all sensitive information at rest using a tool that requires a secondary
authentication mechanism not integrated into the operating system, in order to
access the information.

 ●

https://aws.amazon.com/about-aws/whats-new/2020/03/amazon-eks-adds-envelope-encryption-for-secrets-with-aws-kms/
https://aws.amazon.com/about-aws/whats-new/2020/03/amazon-eks-adds-envelope-encryption-for-secrets-with-aws-kms/
https://docs.aws.amazon.com/eks/latest/APIReference/API_DescribeCluster.html

Page 128

Internal Only - General

5.4 Cluster Networking

This section contains recommendations relating to network security configurations in
Amazon EKS.

Page 129

Internal Only - General

5.4.1 Restrict Access to the Control Plane Endpoint (Automated)

Profile Applicability:

• Level 1

Description:

Enable Endpoint Private Access to restrict access to the cluster's control plane to only
an allowlist of authorized IPs.

Rationale:

Authorized networks are a way of specifying a restricted range of IP addresses that are
permitted to access your cluster's control plane. Kubernetes Engine uses both
Transport Layer Security (TLS) and authentication to provide secure access to your
cluster's control plane from the public internet. This provides you the flexibility to
administer your cluster from anywhere; however, you might want to further restrict
access to a set of IP addresses that you control. You can set this restriction by
specifying an authorized network.

Restricting access to an authorized network can provide additional security benefits for
your container cluster, including:

• Better protection from outsider attacks: Authorized networks provide an
additional layer of security by limiting external access to a specific set of
addresses you designate, such as those that originate from your premises. This
helps protect access to your cluster in the case of a vulnerability in the cluster's
authentication or authorization mechanism.

• Better protection from insider attacks: Authorized networks help protect your
cluster from accidental leaks of master certificates from your company's
premises. Leaked certificates used from outside Cloud Services and outside the
authorized IP ranges (for example, from addresses outside your company) are
still denied access.

Impact:

When implementing Endpoint Private Access, be careful to ensure all desired networks
are on the allowlist (whitelist) to prevent inadvertently blocking external access to your
cluster's control plane.

Audit:

Check for the following to be 'enabled: true'

Page 130

Internal Only - General

export CLUSTER_NAME=<your cluster name>
aws eks describe-cluster --name ${CLUSTER_NAME} --query
"cluster.resourcesVpcConfig.endpointPublicAccess"

aws eks describe-cluster --name ${CLUSTER_NAME} --query
"cluster.resourcesVpcConfig.endpointPrivateAccess"

Check for the following is not null:

export CLUSTER_NAME=<your cluster name>
aws eks describe-cluster --name ${CLUSTER_NAME} --query
"cluster.resourcesVpcConfig.publicAccessCidrs"

Remediation:

By enabling private endpoint access to the Kubernetes API server, all communication
between your nodes and the API server stays within your VPC. You can also limit the IP
addresses that can access your API server from the internet, or completely disable
internet access to the API server.
With this in mind, you can update your cluster accordingly using the AWS CLI to ensure
that Private Endpoint Access is enabled.
If you choose to also enable Public Endpoint Access then you should also configure a
list of allowable CIDR blocks, resulting in restricted access from the internet. If you
specify no CIDR blocks, then the public API server endpoint is able to receive and
process requests from all IP addresses by defaulting to ['0.0.0.0/0'].
For example, the following command would enable private access to the Kubernetes
API as well as limited public access over the internet from a single IP address (noting
the /32 CIDR suffix):
aws eks update-cluster-config --region $AWS_REGION --name
$CLUSTER_NAME --resources-vpc-config endpointPrivateAccess=true,
endpointPrivateAccess=true, publicAccessCidrs="203.0.113.5/32"
Note:
The CIDR blocks specified cannot include reserved addresses.
There is a maximum number of CIDR blocks that you can specify. For more information,
see the EKS Service Quotas link in the references section.
For more detailed information, see the EKS Cluster Endpoint documentation link in the
references section.

Default Value:

By default, Endpoint Public Access is disabled.

References:

1. https://docs.aws.amazon.com/eks/latest/userguide/cluster-endpoint.html

https://docs.aws.amazon.com/eks/latest/userguide/cluster-endpoint.html

Page 131

Internal Only - General

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8
4.4 Implement and Manage a Firewall on Servers
 Implement and manage a firewall on servers, where supported. Example
implementations include a virtual firewall, operating system firewall, or a third-party
firewall agent.

● ● ●

v8

9.3 Maintain and Enforce Network-Based URL Filters
 Enforce and update network-based URL filters to limit an enterprise asset from
connecting to potentially malicious or unapproved websites. Example
implementations include category-based filtering, reputation-based filtering, or
through the use of block lists. Enforce filters for all enterprise assets.

 ● ●

v7

7.4 Maintain and Enforce Network-Based URL Filters
 Enforce network-based URL filters that limit a system's ability to connect to
websites not approved by the organization. This filtering shall be enforced for each
of the organization's systems, whether they are physically at an organization's
facilities or not.

 ● ●

Page 132

Internal Only - General

5.4.2 Ensure clusters are created with Private Endpoint Enabled

and Public Access Disabled (Automated)

Profile Applicability:

• Level 1

Description:

Disable access to the Kubernetes API from outside the node network if it is not required.

Rationale:

In a private cluster, the master node has two endpoints, a private and public endpoint.
The private endpoint is the internal IP address of the master, behind an internal load
balancer in the master's VPC network. Nodes communicate with the master using the
private endpoint. The public endpoint enables the Kubernetes API to be accessed from
outside the master's VPC network.

Although Kubernetes API requires an authorized token to perform sensitive actions, a
vulnerability could potentially expose the Kubernetes publically with unrestricted access.
Additionally, an attacker may be able to identify the current cluster and Kubernetes API
version and determine whether it is vulnerable to an attack. Unless required, disabling
public endpoint will help prevent such threats, and require the attacker to be on the
master's VPC network to perform any attack on the Kubernetes API.

Impact:

Configure the EKS cluster endpoint to be private.

1. Leave the cluster endpoint public and specify which CIDR blocks can
communicate with the cluster endpoint. The blocks are effectively a whitelisted
set of public IP addresses that are allowed to access the cluster endpoint.

2. Configure public access with a set of whitelisted CIDR blocks and set private
endpoint access to enabled. This will allow public access from a specific range of
public IPs while forcing all network traffic between the kubelets (workers) and the
Kubernetes API through the cross-account ENIs that get provisioned into the
cluster VPC when the control plane is provisioned.

Audit:

Check for private endpoint access to the Kubernetes API server
Check for the following to be 'enabled: false'

export CLUSTER_NAME=<your cluster name>
aws eks describe-cluster --name ${CLUSTER_NAME} --query
"cluster.resourcesVpcConfig.endpointPublicAccess"

Check for the following to be 'enabled: true'

Page 133

Internal Only - General

export CLUSTER_NAME=<your cluster name>
aws eks describe-cluster --name ${CLUSTER_NAME} --query
"cluster.resourcesVpcConfig.endpointPrivateAccess"

Remediation:

By enabling private endpoint access to the Kubernetes API server, all communication
between your nodes and the API server stays within your VPC.
With this in mind, you can update your cluster accordingly using the AWS CLI to ensure
that Private Endpoint Access is enabled.
For example, the following command would enable private access to the Kubernetes
API and ensure that no public access is permitted:
aws eks update-cluster-config --region $AWS_REGION --name
$CLUSTER_NAME --resources-vpc-config
endpointPrivateAccess=true,endpointPublicAccess=false
Note: For more detailed information, see the EKS Cluster Endpoint documentation link
in the references section.

Default Value:

By default, the Public Endpoint is disabled.

References:

1. https://docs.aws.amazon.com/eks/latest/userguide/cluster-endpoint.html

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8
4.4 Implement and Manage a Firewall on Servers
 Implement and manage a firewall on servers, where supported. Example
implementations include a virtual firewall, operating system firewall, or a third-
party firewall agent.

● ● ●

v7 12 Boundary Defense
 Boundary Defense

https://docs.aws.amazon.com/eks/latest/userguide/cluster-endpoint.html

Page 134

Internal Only - General

5.4.3 Ensure clusters are created with Private Nodes (Automated)

Profile Applicability:

• Level 1

Description:

Disable public IP addresses for cluster nodes, so that they only have private IP
addresses. Private Nodes are nodes with no public IP addresses.

Rationale:

Disabling public IP addresses on cluster nodes restricts access to only internal
networks, forcing attackers to obtain local network access before attempting to
compromise the underlying Kubernetes hosts.

Impact:

To enable Private Nodes, the cluster has to also be configured with a private master IP
range and IP Aliasing enabled.

Private Nodes do not have outbound access to the public internet. If you want to provide
outbound Internet access for your private nodes, you can use Cloud NAT or you can
manage your own NAT gateway.

Audit:

Check for the following to be 'enabled: true'

export CLUSTER_NAME=<your cluster name>
aws eks describe-cluster --name ${CLUSTER_NAME} --query
"cluster.resourcesVpcConfig.endpointPrivateAccess"

Check for the following is not null:

export CLUSTER_NAME=<your cluster name>
aws eks describe-cluster --name ${CLUSTER_NAME} --query
"cluster.resourcesVpcConfig.publicAccessCidrs"

Note: In addition include the check if the nodes are deployed in private subnets and no
public IP is assigned. The private subnets should not be associated with a route table
that has a route to an Internet Gateway (IGW).

Page 135

Internal Only - General

Remediation:

aws eks update-cluster-config \
 --region region-code \
 --name my-cluster \
 --resources-vpc-config
endpointPublicAccess=true,publicAccessCidrs="203.0.113.5/32",endpointPrivateA
ccess=true

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8
4.4 Implement and Manage a Firewall on Servers
 Implement and manage a firewall on servers, where supported. Example
implementations include a virtual firewall, operating system firewall, or a third-
party firewall agent.

● ● ●

v7 12 Boundary Defense
 Boundary Defense

Page 136

Internal Only - General

5.4.4 Ensure Network Policy is Enabled and set as appropriate

(Automated)

Profile Applicability:

• Level 1

Description:

Amazon EKS provides two ways to implement network policy. You choose a network
policy option when you create an EKS cluster. The policy option can't be changed after
the cluster is created: Calico Network Policies, an open-source network and network
security solution founded by Tigera. Both implementations use Linux IPTables to
enforce the specified policies. Policies are translated into sets of allowed and disallowed
IP pairs. These pairs are then programmed as IPTable filter rules.

Rationale:

By default, all pod to pod traffic within a cluster is allowed. Network Policy creates a
pod-level firewall that can be used to restrict traffic between sources. Pod traffic is
restricted by having a Network Policy that selects it (through the use of labels). Once
there is any Network Policy in a namespace selecting a particular pod, that pod will
reject any connections that are not allowed by any Network Policy. Other pods in the
namespace that are not selected by any Network Policy will continue to accept all traffic.

Network Policies are managed via the Kubernetes Network Policy API and enforced by
a network plugin, simply creating the resource without a compatible network plugin to
implement it will have no effect.

Impact:

Network Policy requires the Network Policy add-on. This add-on is included
automatically when a cluster with Network Policy is created, but for an existing cluster,
needs to be added prior to enabling Network Policy.

Enabling/Disabling Network Policy causes a rolling update of all cluster nodes, similar to
performing a cluster upgrade. This operation is long-running and will block other
operations on the cluster (including delete) until it has run to completion.

Enabling Network Policy enforcement consumes additional resources in nodes.
Specifically, it increases the memory footprint of the kube-system process by
approximately 128MB, and requires approximately 300 millicores of CPU.

Audit:

Check for the following is not null and set with appropriate group id:

Page 137

Internal Only - General

export CLUSTER_NAME=<your cluster name>

aws eks describe-cluster --name ${CLUSTER_NAME} --query
"cluster.resourcesVpcConfig.clusterSecurityGroupId"

Check for the following is True:

export CLUSTER_NAME=<your cluster name>

aws eks describe-addon --cluster-name ${CLUSTER_NAME} --addon-name vpc-cni --
query addon.configurationValues

Remediation:

Utilize Calico or other network policy engine to segment and isolate your traffic.

Default Value:

By default, Network Policy is disabled.

References:

1. https://docs.aws.amazon.com/eks/latest/userguide/eks-networking-add-ons.html

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

12.6 Use of Secure Network Management and
Communication Protocols
 Use secure network management and communication protocols (e.g., 802.1X,
Wi-Fi Protected Access 2 (WPA2) Enterprise or greater).

 ● ●

v7

9.2 Ensure Only Approved Ports, Protocols and Services
Are Running
 Ensure that only network ports, protocols, and services listening on a system
with validated business needs, are running on each system.

 ● ●

v7
9.4 Apply Host-based Firewalls or Port Filtering
 Apply host-based firewalls or port filtering tools on end systems, with a
default-deny rule that drops all traffic except those services and ports that are
explicitly allowed.

● ● ●

https://docs.aws.amazon.com/eks/latest/userguide/eks-networking-add-ons.html

Page 138

Internal Only - General

5.4.5 Encrypt traffic to HTTPS load balancers with TLS

certificates (Manual)

Profile Applicability:

• Level 1

Description:

Encrypt traffic to HTTPS load balancers using TLS certificates.

Rationale:

Encrypting traffic between users and your Kubernetes workload is fundamental to
protecting data sent over the web.

Audit:

Your load balancer vendor can provide details on auditing the certificates and policies
required to utilize TLS.

Remediation:

Your load balancer vendor can provide details on configuring HTTPS with TLS.

References:

1. https://docs.aws.amazon.com/elasticloadbalancing/latest/userguide/data-
protection.html

2. https://docs.aws.amazon.com/elasticloadbalancing/latest/application/create-
https-listener.html

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8
3.10 Encrypt Sensitive Data in Transit
 Encrypt sensitive data in transit. Example implementations can include:
Transport Layer Security (TLS) and Open Secure Shell (OpenSSH).

 ● ●

v7 14.4 Encrypt All Sensitive Information in Transit
 Encrypt all sensitive information in transit.

 ● ●

https://docs.aws.amazon.com/elasticloadbalancing/latest/userguide/data-protection.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/userguide/data-protection.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/create-https-listener.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/create-https-listener.html

Page 139

Internal Only - General

5.5 Authentication and Authorization

This section contains recommendations relating to authentication and authorization in
Amazon EKS.

Page 140

Internal Only - General

5.5.1 Manage Kubernetes RBAC users with AWS IAM

Authenticator for Kubernetes or Upgrade to AWS CLI v1.16.156

or greater (Manual)

Profile Applicability:

• Level 1

Description:

Amazon EKS uses IAM to provide authentication to your Kubernetes cluster through the
AWS IAM Authenticator for Kubernetes. You can configure the stock kubectl client to
work with Amazon EKS by installing the AWS IAM Authenticator for Kubernetes and
modifying your kubectl configuration file to use it for authentication.

Rationale:

On- and off-boarding users is often difficult to automate and prone to error. Using a
single source of truth for user permissions reduces the number of locations that an
individual must be off-boarded from, and prevents users gaining unique permissions
sets that increase the cost of audit.

Impact:

Users must now be assigned to the IAM group created to use this namespace and
deploy applications. If they are not they will not be able to access the namespace or
deploy.

Audit:

To Audit access to the namespace $NAMESPACE, assume the IAM role
yourIAMRoleName for a user that you created, and then run the following command:

$ kubectl get role -n $NAMESPACE

The response lists the RBAC role that has access to this Namespace.

Remediation:

Refer to the 'Managing users or IAM roles for your cluster' in Amazon EKS
documentation.
Note: If using AWS CLI version 1.16.156 or later there is no need to install the AWS
IAM Authenticator anymore.
The relevant AWS CLI commands, depending on the use case, are:

https://docs.aws.amazon.com/eks/latest/userguide/add-user-role.html

Page 141

Internal Only - General

aws eks update-kubeconfig
aws eks get-token

Default Value:

For role-based access control (RBAC), system:masters permissions are configured in
the Amazon EKS control plane

References:

1. https://docs.aws.amazon.com/eks/latest/userguide/add-user-role.html
2. https://docs.aws.amazon.com/eks/latest/userguide/add-user-role.html

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

6.8 Define and Maintain Role-Based Access Control
 Define and maintain role-based access control, through determining and
documenting the access rights necessary for each role within the enterprise to
successfully carry out its assigned duties. Perform access control reviews of
enterprise assets to validate that all privileges are authorized, on a recurring
schedule at a minimum annually, or more frequently.

 ●

v7
16.2 Configure Centralized Point of Authentication
 Configure access for all accounts through as few centralized points of
authentication as possible, including network, security, and cloud systems.

 ● ●

https://docs.aws.amazon.com/eks/latest/userguide/add-user-role.html
https://docs.aws.amazon.com/eks/latest/userguide/add-user-role.html

Page 142

Internal Only - General

Appendix: Summary Table

CIS Benchmark Recommendation Set
Correctly

Yes No

1 Control Plane Components

2 Control Plane Configuration

2.1 Logging

2.1.1 Enable audit Logs (Automated)  

2.1.2 Ensure audit logs are collected and managed (Manual)  

3 Worker Nodes

3.1 Worker Node Configuration Files

3.1.1 Ensure that the kubeconfig file permissions are set to
644 or more restrictive (Automated)

 

3.1.2 Ensure that the kubelet kubeconfig file ownership is set
to root:root (Automated)

 

3.1.3 Ensure that the kubelet configuration file has
permissions set to 644 or more restrictive (Automated)

 

3.1.4 Ensure that the kubelet configuration file ownership is
set to root:root (Automated)

 

3.2 Kubelet

3.2.1 Ensure that the Anonymous Auth is Not Enabled
(Automated)

 

3.2.2 Ensure that the --authorization-mode argument is not set
to AlwaysAllow (Automated)

 

3.2.3 Ensure that a Client CA File is Configured (Automated)  

3.2.4 Ensure that the --read-only-port is disabled (Automated)  

Page 143

Internal Only - General

CIS Benchmark Recommendation Set
Correctly

Yes No

3.2.5 Ensure that the --streaming-connection-idle-timeout
argument is not set to 0 (Automated)

 

3.2.6 Ensure that the --make-iptables-util-chains argument is
set to true (Automated)

 

3.2.7 Ensure that the --eventRecordQPS argument is set to 0
or a level which ensures appropriate event capture
(Automated)

 

3.2.8 Ensure that the --rotate-certificates argument is not
present or is set to true (Automated)

 

3.2.9 Ensure that the RotateKubeletServerCertificate
argument is set to true (Automated)

 

4 Policies

4.1 RBAC and Service Accounts

4.1.1 Ensure that the cluster-admin role is only used where
required (Automated)

 

4.1.2 Minimize access to secrets (Automated)  

4.1.3 Minimize wildcard use in Roles and ClusterRoles
(Automated)

 

4.1.4 Minimize access to create pods (Automated)  

4.1.5 Ensure that default service accounts are not actively
used. (Automated)

 

4.1.6 Ensure that Service Account Tokens are only mounted
where necessary (Automated)

 

4.1.7 Cluster Access Manager API to streamline and enhance
the management of access controls within EKS clusters
(Automated)

 

4.1.8 Limit use of the Bind, Impersonate and Escalate
permissions in the Kubernetes cluster (Manual)

 

Page 144

Internal Only - General

CIS Benchmark Recommendation Set
Correctly

Yes No

4.2 Pod Security Standards

4.2.1 Minimize the admission of privileged containers
(Automated)

 

4.2.2 Minimize the admission of containers wishing to share
the host process ID namespace (Automated)

 

4.2.3 Minimize the admission of containers wishing to share
the host IPC namespace (Automated)

 

4.2.4 Minimize the admission of containers wishing to share
the host network namespace (Automated)

 

4.2.5 Minimize the admission of containers with
allowPrivilegeEscalation (Automated)

 

4.3 CNI Plugin

4.3.1 Ensure CNI plugin supports network policies. (Manual)  

4.3.2 Ensure that all Namespaces have Network Policies
defined (Automated)

 

4.4 Secrets Management

4.4.1 Prefer using secrets as files over secrets as environment
variables (Automated)

 

4.4.2 Consider external secret storage (Manual)  

4.5 General Policies

4.5.1 Create administrative boundaries between resources
using namespaces (Manual)

 

4.5.2 The default namespace should not be used (Automated)  

5 Managed services

5.1 Image Registry and Image Scanning

Page 145

Internal Only - General

CIS Benchmark Recommendation Set
Correctly

Yes No

5.1.1 Ensure Image Vulnerability Scanning using Amazon
ECR image scanning or a third party provider
(Automated)

 

5.1.2 Minimize user access to Amazon ECR (Manual)  

5.1.3 Minimize cluster access to read-only for Amazon ECR
(Manual)

 

5.1.4 Minimize Container Registries to only those approved
(Manual)

 

5.2 Identity and Access Management (IAM)

5.2.1 Prefer using dedicated EKS Service Accounts
(Automated)

 

5.3 AWS EKS Key Management Service

5.3.1 Ensure Kubernetes Secrets are encrypted using
Customer Master Keys (CMKs) managed in AWS KMS
(Manual)

 

5.4 Cluster Networking

5.4.1 Restrict Access to the Control Plane Endpoint
(Automated)

 

5.4.2 Ensure clusters are created with Private Endpoint
Enabled and Public Access Disabled (Automated)

 

5.4.3 Ensure clusters are created with Private Nodes
(Automated)

 

5.4.4 Ensure Network Policy is Enabled and set as appropriate
(Automated)

 

5.4.5 Encrypt traffic to HTTPS load balancers with TLS
certificates (Manual)

 

5.5 Authentication and Authorization

Page 146

Internal Only - General

CIS Benchmark Recommendation Set
Correctly

Yes No

5.5.1 Manage Kubernetes RBAC users with AWS IAM
Authenticator for Kubernetes or Upgrade to AWS CLI
v1.16.156 or greater (Manual)

 

Page 147

Internal Only - General

Appendix: CIS Controls v7 IG 1 Mapped

Recommendations

Recommendation Set
Correctly

Yes No

2.1.1 Enable audit Logs  

2.1.2 Ensure audit logs are collected and managed  

3.2.1 Ensure that the Anonymous Auth is Not Enabled  

3.2.2 Ensure that the --authorization-mode argument is not set
to AlwaysAllow

 

3.2.7 Ensure that the --eventRecordQPS argument is set to 0
or a level which ensures appropriate event capture

 

4.1.1 Ensure that the cluster-admin role is only used where
required

 

4.1.5 Ensure that default service accounts are not actively
used.

 

4.2.1 Minimize the admission of privileged containers  

4.2.2 Minimize the admission of containers wishing to share
the host process ID namespace

 

4.2.3 Minimize the admission of containers wishing to share
the host IPC namespace

 

4.2.4 Minimize the admission of containers wishing to share
the host network namespace

 

4.2.5 Minimize the admission of containers with
allowPrivilegeEscalation

 

4.5.1 Create administrative boundaries between resources
using namespaces

 

4.5.2 The default namespace should not be used  

5.1.2 Minimize user access to Amazon ECR  

5.1.3 Minimize cluster access to read-only for Amazon ECR  

5.2.1 Prefer using dedicated EKS Service Accounts  

5.4.4 Ensure Network Policy is Enabled and set as appropriate  

Page 148

Internal Only - General

Page 149

Internal Only - General

Appendix: CIS Controls v7 IG 2 Mapped

Recommendations

Recommendation Set
Correctly

Yes No

2.1.1 Enable audit Logs  

2.1.2 Ensure audit logs are collected and managed  

3.1.1 Ensure that the kubeconfig file permissions are set to
644 or more restrictive

 

3.1.2 Ensure that the kubelet kubeconfig file ownership is set
to root:root

 

3.1.3 Ensure that the kubelet configuration file has permissions
set to 644 or more restrictive

 

3.1.4 Ensure that the kubelet configuration file ownership is set
to root:root

 

3.2.1 Ensure that the Anonymous Auth is Not Enabled  

3.2.2 Ensure that the --authorization-mode argument is not set
to AlwaysAllow

 

3.2.3 Ensure that a Client CA File is Configured  

3.2.4 Ensure that the --read-only-port is disabled  

3.2.5 Ensure that the --streaming-connection-idle-timeout
argument is not set to 0

 

3.2.6 Ensure that the --make-iptables-util-chains argument is
set to true

 

3.2.7 Ensure that the --eventRecordQPS argument is set to 0
or a level which ensures appropriate event capture

 

3.2.8 Ensure that the --rotate-certificates argument is not
present or is set to true

 

3.2.9 Ensure that the RotateKubeletServerCertificate argument
is set to true

 

4.1.1 Ensure that the cluster-admin role is only used where
required

 

4.1.2 Minimize access to secrets  

4.1.3 Minimize wildcard use in Roles and ClusterRoles  

4.1.4 Minimize access to create pods  

Page 150

Internal Only - General

Recommendation Set
Correctly

Yes No

4.1.5 Ensure that default service accounts are not actively
used.

 

4.2.1 Minimize the admission of privileged containers  

4.2.2 Minimize the admission of containers wishing to share
the host process ID namespace

 

4.2.3 Minimize the admission of containers wishing to share
the host IPC namespace

 

4.2.4 Minimize the admission of containers wishing to share
the host network namespace

 

4.2.5 Minimize the admission of containers with
allowPrivilegeEscalation

 

4.3.1 Ensure CNI plugin supports network policies.  

4.3.2 Ensure that all Namespaces have Network Policies
defined

 

4.4.1 Prefer using secrets as files over secrets as environment
variables

 

4.5.1 Create administrative boundaries between resources
using namespaces

 

4.5.2 The default namespace should not be used  

5.1.1 Ensure Image Vulnerability Scanning using Amazon ECR
image scanning or a third party provider

 

5.1.2 Minimize user access to Amazon ECR  

5.1.3 Minimize cluster access to read-only for Amazon ECR  

5.1.4 Minimize Container Registries to only those approved  

5.2.1 Prefer using dedicated EKS Service Accounts  

5.4.1 Restrict Access to the Control Plane Endpoint  

5.4.4 Ensure Network Policy is Enabled and set as appropriate  

5.4.5 Encrypt traffic to HTTPS load balancers with TLS
certificates

 

5.5.1 Manage Kubernetes RBAC users with AWS IAM
Authenticator for Kubernetes or Upgrade to AWS CLI
v1.16.156 or greater

 

Page 151

Internal Only - General

Page 152

Internal Only - General

Appendix: CIS Controls v7 IG 3 Mapped

Recommendations

Recommendation Set
Correctly

Yes No

2.1.1 Enable audit Logs  

2.1.2 Ensure audit logs are collected and managed  

3.1.1 Ensure that the kubeconfig file permissions are set to
644 or more restrictive

 

3.1.2 Ensure that the kubelet kubeconfig file ownership is set
to root:root

 

3.1.3 Ensure that the kubelet configuration file has permissions
set to 644 or more restrictive

 

3.1.4 Ensure that the kubelet configuration file ownership is set
to root:root

 

3.2.1 Ensure that the Anonymous Auth is Not Enabled  

3.2.2 Ensure that the --authorization-mode argument is not set
to AlwaysAllow

 

3.2.3 Ensure that a Client CA File is Configured  

3.2.4 Ensure that the --read-only-port is disabled  

3.2.5 Ensure that the --streaming-connection-idle-timeout
argument is not set to 0

 

3.2.6 Ensure that the --make-iptables-util-chains argument is
set to true

 

3.2.7 Ensure that the --eventRecordQPS argument is set to 0
or a level which ensures appropriate event capture

 

3.2.8 Ensure that the --rotate-certificates argument is not
present or is set to true

 

3.2.9 Ensure that the RotateKubeletServerCertificate argument
is set to true

 

4.1.1 Ensure that the cluster-admin role is only used where
required

 

4.1.2 Minimize access to secrets  

4.1.3 Minimize wildcard use in Roles and ClusterRoles  

4.1.4 Minimize access to create pods  

Page 153

Internal Only - General

Recommendation Set
Correctly

Yes No

4.1.5 Ensure that default service accounts are not actively
used.

 

4.1.6 Ensure that Service Account Tokens are only mounted
where necessary

 

4.1.7 Cluster Access Manager API to streamline and enhance
the management of access controls within EKS clusters

 

4.1.8 Limit use of the Bind, Impersonate and Escalate
permissions in the Kubernetes cluster

 

4.2.1 Minimize the admission of privileged containers  

4.2.2 Minimize the admission of containers wishing to share
the host process ID namespace

 

4.2.3 Minimize the admission of containers wishing to share
the host IPC namespace

 

4.2.4 Minimize the admission of containers wishing to share
the host network namespace

 

4.2.5 Minimize the admission of containers with
allowPrivilegeEscalation

 

4.3.1 Ensure CNI plugin supports network policies.  

4.3.2 Ensure that all Namespaces have Network Policies
defined

 

4.4.1 Prefer using secrets as files over secrets as environment
variables

 

4.4.2 Consider external secret storage  

4.5.1 Create administrative boundaries between resources
using namespaces

 

4.5.2 The default namespace should not be used  

5.1.1 Ensure Image Vulnerability Scanning using Amazon ECR
image scanning or a third party provider

 

5.1.2 Minimize user access to Amazon ECR  

5.1.3 Minimize cluster access to read-only for Amazon ECR  

5.1.4 Minimize Container Registries to only those approved  

5.2.1 Prefer using dedicated EKS Service Accounts  

5.3.1 Ensure Kubernetes Secrets are encrypted using
Customer Master Keys (CMKs) managed in AWS KMS

 

5.4.1 Restrict Access to the Control Plane Endpoint  

Page 154

Internal Only - General

Recommendation Set
Correctly

Yes No

5.4.4 Ensure Network Policy is Enabled and set as appropriate  

5.4.5 Encrypt traffic to HTTPS load balancers with TLS
certificates

 

5.5.1 Manage Kubernetes RBAC users with AWS IAM
Authenticator for Kubernetes or Upgrade to AWS CLI
v1.16.156 or greater

 

Page 155

Internal Only - General

Appendix: CIS Controls v7 Unmapped

Recommendations

Recommendation Set
Correctly

Yes No

 No unmapped recommendations to CIS Controls v7  

Page 156

Internal Only - General

Appendix: CIS Controls v8 IG 1 Mapped

Recommendations

Recommendation Set
Correctly

Yes No

2.1.1 Enable audit Logs  

2.1.2 Ensure audit logs are collected and managed  

3.1.1 Ensure that the kubeconfig file permissions are set to
644 or more restrictive

 

3.1.2 Ensure that the kubelet kubeconfig file ownership is set
to root:root

 

3.1.3 Ensure that the kubelet configuration file has permissions
set to 644 or more restrictive

 

3.1.4 Ensure that the kubelet configuration file ownership is set
to root:root

 

3.2.1 Ensure that the Anonymous Auth is Not Enabled  

3.2.2 Ensure that the --authorization-mode argument is not set
to AlwaysAllow

 

3.2.7 Ensure that the --eventRecordQPS argument is set to 0
or a level which ensures appropriate event capture

 

4.1.1 Ensure that the cluster-admin role is only used where
required

 

4.1.2 Minimize access to secrets  

4.1.3 Minimize wildcard use in Roles and ClusterRoles  

4.1.5 Ensure that default service accounts are not actively
used.

 

4.2.1 Minimize the admission of privileged containers  

4.2.2 Minimize the admission of containers wishing to share
the host process ID namespace

 

4.2.3 Minimize the admission of containers wishing to share
the host IPC namespace

 

4.2.4 Minimize the admission of containers wishing to share
the host network namespace

 

4.2.5 Minimize the admission of containers with
allowPrivilegeEscalation

 

Page 157

Internal Only - General

Recommendation Set
Correctly

Yes No

4.3.1 Ensure CNI plugin supports network policies.  

4.3.2 Ensure that all Namespaces have Network Policies
defined

 

5.1.2 Minimize user access to Amazon ECR  

5.1.3 Minimize cluster access to read-only for Amazon ECR  

5.4.1 Restrict Access to the Control Plane Endpoint  

5.4.2 Ensure clusters are created with Private Endpoint
Enabled and Public Access Disabled

 

5.4.3 Ensure clusters are created with Private Nodes  

Page 158

Internal Only - General

Appendix: CIS Controls v8 IG 2 Mapped

Recommendations

Recommendation Set
Correctly

Yes No

2.1.1 Enable audit Logs  

2.1.2 Ensure audit logs are collected and managed  

3.1.1 Ensure that the kubeconfig file permissions are set to
644 or more restrictive

 

3.1.2 Ensure that the kubelet kubeconfig file ownership is set
to root:root

 

3.1.3 Ensure that the kubelet configuration file has permissions
set to 644 or more restrictive

 

3.1.4 Ensure that the kubelet configuration file ownership is set
to root:root

 

3.2.1 Ensure that the Anonymous Auth is Not Enabled  

3.2.2 Ensure that the --authorization-mode argument is not set
to AlwaysAllow

 

3.2.3 Ensure that a Client CA File is Configured  

3.2.4 Ensure that the --read-only-port is disabled  

3.2.5 Ensure that the --streaming-connection-idle-timeout
argument is not set to 0

 

3.2.6 Ensure that the --make-iptables-util-chains argument is
set to true

 

3.2.7 Ensure that the --eventRecordQPS argument is set to 0
or a level which ensures appropriate event capture

 

3.2.8 Ensure that the --rotate-certificates argument is not
present or is set to true

 

3.2.9 Ensure that the RotateKubeletServerCertificate argument
is set to true

 

4.1.1 Ensure that the cluster-admin role is only used where
required

 

4.1.2 Minimize access to secrets  

4.1.3 Minimize wildcard use in Roles and ClusterRoles  

Page 159

Internal Only - General

Recommendation Set
Correctly

Yes No

4.1.5 Ensure that default service accounts are not actively
used.

 

4.1.6 Ensure that Service Account Tokens are only mounted
where necessary

 

4.1.7 Cluster Access Manager API to streamline and enhance
the management of access controls within EKS clusters

 

4.1.8 Limit use of the Bind, Impersonate and Escalate
permissions in the Kubernetes cluster

 

4.2.1 Minimize the admission of privileged containers  

4.2.2 Minimize the admission of containers wishing to share
the host process ID namespace

 

4.2.3 Minimize the admission of containers wishing to share
the host IPC namespace

 

4.2.4 Minimize the admission of containers wishing to share
the host network namespace

 

4.2.5 Minimize the admission of containers with
allowPrivilegeEscalation

 

4.3.1 Ensure CNI plugin supports network policies.  

4.3.2 Ensure that all Namespaces have Network Policies
defined

 

4.4.1 Prefer using secrets as files over secrets as environment
variables

 

4.4.2 Consider external secret storage  

4.5.2 The default namespace should not be used  

5.1.1 Ensure Image Vulnerability Scanning using Amazon ECR
image scanning or a third party provider

 

5.1.2 Minimize user access to Amazon ECR  

5.1.3 Minimize cluster access to read-only for Amazon ECR  

5.1.4 Minimize Container Registries to only those approved  

5.3.1 Ensure Kubernetes Secrets are encrypted using
Customer Master Keys (CMKs) managed in AWS KMS

 

5.4.1 Restrict Access to the Control Plane Endpoint  

5.4.2 Ensure clusters are created with Private Endpoint
Enabled and Public Access Disabled

 

5.4.3 Ensure clusters are created with Private Nodes  

Page 160

Internal Only - General

Recommendation Set
Correctly

Yes No

5.4.4 Ensure Network Policy is Enabled and set as appropriate  

5.4.5 Encrypt traffic to HTTPS load balancers with TLS
certificates

 

Page 161

Internal Only - General

Appendix: CIS Controls v8 IG 3 Mapped

Recommendations

Recommendation Set
Correctly

Yes No

2.1.1 Enable audit Logs  

2.1.2 Ensure audit logs are collected and managed  

3.1.1 Ensure that the kubeconfig file permissions are set to
644 or more restrictive

 

3.1.2 Ensure that the kubelet kubeconfig file ownership is set
to root:root

 

3.1.3 Ensure that the kubelet configuration file has permissions
set to 644 or more restrictive

 

3.1.4 Ensure that the kubelet configuration file ownership is set
to root:root

 

3.2.1 Ensure that the Anonymous Auth is Not Enabled  

3.2.2 Ensure that the --authorization-mode argument is not set
to AlwaysAllow

 

3.2.3 Ensure that a Client CA File is Configured  

3.2.4 Ensure that the --read-only-port is disabled  

3.2.5 Ensure that the --streaming-connection-idle-timeout
argument is not set to 0

 

3.2.6 Ensure that the --make-iptables-util-chains argument is
set to true

 

3.2.7 Ensure that the --eventRecordQPS argument is set to 0
or a level which ensures appropriate event capture

 

3.2.8 Ensure that the --rotate-certificates argument is not
present or is set to true

 

3.2.9 Ensure that the RotateKubeletServerCertificate argument
is set to true

 

4.1.1 Ensure that the cluster-admin role is only used where
required

 

4.1.2 Minimize access to secrets  

4.1.3 Minimize wildcard use in Roles and ClusterRoles  

4.1.4 Minimize access to create pods  

Page 162

Internal Only - General

Recommendation Set
Correctly

Yes No

4.1.5 Ensure that default service accounts are not actively
used.

 

4.1.6 Ensure that Service Account Tokens are only mounted
where necessary

 

4.1.7 Cluster Access Manager API to streamline and enhance
the management of access controls within EKS clusters

 

4.1.8 Limit use of the Bind, Impersonate and Escalate
permissions in the Kubernetes cluster

 

4.2.1 Minimize the admission of privileged containers  

4.2.2 Minimize the admission of containers wishing to share
the host process ID namespace

 

4.2.3 Minimize the admission of containers wishing to share
the host IPC namespace

 

4.2.4 Minimize the admission of containers wishing to share
the host network namespace

 

4.2.5 Minimize the admission of containers with
allowPrivilegeEscalation

 

4.3.1 Ensure CNI plugin supports network policies.  

4.3.2 Ensure that all Namespaces have Network Policies
defined

 

4.4.1 Prefer using secrets as files over secrets as environment
variables

 

4.4.2 Consider external secret storage  

4.5.1 Create administrative boundaries between resources
using namespaces

 

4.5.2 The default namespace should not be used  

5.1.1 Ensure Image Vulnerability Scanning using Amazon ECR
image scanning or a third party provider

 

5.1.2 Minimize user access to Amazon ECR  

5.1.3 Minimize cluster access to read-only for Amazon ECR  

5.1.4 Minimize Container Registries to only those approved  

5.2.1 Prefer using dedicated EKS Service Accounts  

5.3.1 Ensure Kubernetes Secrets are encrypted using
Customer Master Keys (CMKs) managed in AWS KMS

 

5.4.1 Restrict Access to the Control Plane Endpoint  

Page 163

Internal Only - General

Recommendation Set
Correctly

Yes No

5.4.2 Ensure clusters are created with Private Endpoint
Enabled and Public Access Disabled

 

5.4.3 Ensure clusters are created with Private Nodes  

5.4.4 Ensure Network Policy is Enabled and set as appropriate  

5.4.5 Encrypt traffic to HTTPS load balancers with TLS
certificates

 

5.5.1 Manage Kubernetes RBAC users with AWS IAM
Authenticator for Kubernetes or Upgrade to AWS CLI
v1.16.156 or greater

 

Page 164

Internal Only - General

Appendix: CIS Controls v8 Unmapped

Recommendations

Recommendation Set
Correctly

Yes No

 No unmapped recommendations to CIS Controls v8  

Page 165

Internal Only - General

Appendix: Change History

Date Version Changes for this version

5/14/2024 1.5.0 AAC updated and tested against Latest
Cluster available v1.31

5/12/2024 1.5.0 4.1.7 Cluster Access Manager API to
streamline and enhance the
management of access controls within

EKS clusters

5/12/2024 1.5.0 3.1.1 Ensure that the kubeconfig file
permissions are set to 644 or more
restrictive

5/12/2024 1.5.0 3.1.2 Ensure that the kubelet
kubeconfig file ownership is set to
root:root

5/12/2024 1.5.0 3.1.3 Ensure that the kubelet
configuration file has permissions set to
644 or more restrictive

5/12/2024 1.5.0 3.1.4 Ensure that the kubelet
configuration file ownership is set to
root:root

5/12/2024 1.5.0 4.2.1 Minimize the admission of
privileged containers

5/12/2024 1.5.0 4.2.2 Minimize the admission of
containers wishing to share the host
process ID namespace

5/12/2024 1.5.0 4.2.3 Minimize the admission of
containers wishing to share the host
IPC namespace

5/12/2024 1.5.0 4.2.4 Minimize the admission of
containers wishing to share the host
network namespace

5/12/2024 1.5.0 4.2.5 Minimize the admission of
containers with
allowPrivilegeEscalation

5/12/2024 1.5.0 4.5.3 The default namespace should
not be used

Page 166

Internal Only - General

Date Version Changes for this version

5/12/2024 1.5.0 3.3.1 Prefer using a container-
optimized OS when possible

5/12/2024 1.5.0 4.2.6 Minimize the admission of root
containers

5/12/2024 1.5.0 4.2.7 Minimize the admission of
containers with added capabilities

5/12/2024 1.5.0 4.2.8 Minimize the admission of
containers with capabilities assigned

5/12/2024 1.5.0 6.1 Consider Fargate for running
untrusted workloads

5/12/2024 1.5.0 3.2.4 Ensure that the --read-only-port is
disabled

5/12/2024 1.5.0 3.2.8 Ensure that the --rotate-
certificates argument is not present or
is set to true

5/12/2024 1.5.0 4.1.1 Ensure that the cluster-admin role
is only used where required

5/11/2024 1.5.0 4.1.2 Minimize access to secrets

5/11/2024 1.5.0 4.1.4 Minimize access to create pods

5/11/2024 1.5.0 4.1.5 Ensure that default service
accounts are not actively used

5/11/2024 1.5.0 4.1.6 Ensure that Service Account
Tokens are only mounted where
necessary

5/1/2024 1.5.0 Added AAC for 4.1.7 Avoid use of
system:masters group

5/1/2024 1.5.0 Added AAC for 4.3.2 Ensure that all
Namespaces have Network Policies
defined

5/1/2024 1.5.0 Added AAC for 4.4.1 Prefer using secrets
as files over secrets as environment
variables

5/1/2024 1.5.0 Added AAC for 5.2.1 Prefer using
dedicated EKS Service Accounts

Page 167

Internal Only - General

Date Version Changes for this version

9/17/2023 1.4.0 Added support the latest Kubernetes
version Cluster creation option/s

9/15/2023 1.4.0 Ticket 19589 – Reassessed EKS 3.2.7
Hostname override recommendation

5/5/2023 1.3.0 Ticket 18577 – Added specific audit
command for ensuring clusters are created
with private endpoints – recommendation
5.3.3

4/30/2023 1.3.0 Ticket 18578 – updated audit and
remediation guidance for ensure network
policy is enabled – recommendation 5.4.4

4/29/2023 1.3.0 Ticket 18576 – updated audit procedure
guidance for restricting access to the
control plane – recommendation 5.4.1

3/15/2023 1.3.0 Ticket 18580 – Added Audit procedure for
running untrusted workloads –
recommendation 5.6.1

3/11/2023 1.3.0 Ticket 18579 – Added specific audit and
remediation guidance to recommendation
5.4.5

03/11/2023 1.3.0 Ticket 17212 – Edited 4.5 Admission
Controls Section. It will be revised in
VNext.

02/22/2023 1.3.0 Ticket 17102 – Replaced deprecated and
out of date Pod Security Policy verbiage
with pod Security Standards.

11/14/2022 1.2.0 Ticket 15928 – Recommendation 3.2.9
updated

11/14/2022 1.2.0 Ticket 15915 – Pod Security Policy
deprecated

11/12/2022 1.2.0 Ticket 15913 – recommendation 3.2.9
updated Event QPS deprecated

11/12/2022 1.2.0 Ticket 16516 – recommendation 3.2.2
updated configuration guidance regarding
“always allow”

11/12/2022 1.2.0 Ticket 15485 – ELS Audit Log impact
statement updated.

Page 168

Internal Only - General

Date Version Changes for this version

11/12/2022 1.2.0 Ticket 15654 – recommendation 3.2.3 audit

11/01/2022 1.2.0 Ticket 15618 – recommendation 3.2.9
profile updated to level 2

11/01/2022 1.2.0 Ticket 15616 – recommendation 3.2.8 -
hostname-overide remediation process
updated.

11/01/2022 1.2.0 Ticket 15805 – recommendation 3.3.1 audit
procedure updated.

10/10/2022 1.2.0 Ticket 15843 – remediation process
updated to set .spec.privileged field to
false.

10/10/2022 1.2.0 Ticket 15849 – PSP has
allowedCapabilities Set by Default

10/10/2022 1.2.0 Ticket 15850 – recommendation 4.2.7
combined with 4.2.9

10/08/2022 1.2.0 Ticket 15532 – recommendation 5.4.2
updated remediation process

10/08/2022 1.2.0 Ticket 15804 – recommendation 3.3.1
description updated

10/08/2022 1.2.0 Ticket 15602 – recommendation 3.2.6 audit
procedure updated

10/08/2022 1.2.0 Ticket 16433 – recommendation 3.2.10
updated the default value

10/08/2022 1.2.0 Ticket 15613 – recommendations 3.2.1,
3.2.2, 3.2.3 updated to reflect
authentication vs authorization exec
arguments

10/08/2022 1.2.0 Ticket 15677 – recommendation 5.2.1
updated to reflect EKS specifics

10/08/2022 1.2.0 Ticket 15533 -recommendation 5.4.4
updated recommendation for EKS specifics

9/01/2022 1.2.0 Ticket 15615 – recommendation 3.2.8
updated impact statement

9/01/2022 1.2.0 Ticket 15611 – recommendation 3.2.5
updated audit and remediation methods

Page 169

Internal Only - General

Date Version Changes for this version

9/01/2022 1.2.0 Ticket 15610 – recommendation 3.2.6
updated description

9/01/2022 1.2.0 Ticket 15531 – recommendation 5.4.1
updated remediation process

9/01/2022 1.2.0 Ticket 15533 – recommendation 5.4.4
updated

9/01/2022 1.2.0 Ticket 15599 – recommendation 5.4.5
reviewed load balancer scope

9/01/2022 1.2.0 Ticket 15554 – recommendation 5.5.1
updated default configuration

9/01/2022 1.2.0 Ticket 16573 - recommendation 3.2.1 and
3.2.2 updated and aligned based on new
functionality

9/01/2022 1.2.0 Ticket 16612 – recommendation 5.4.2
updated audit procedure

9/01/2022 1.2.0 Ticket 16674 – recommendation 3.2.3
updated out of date guidance

9/01/2022 1.2.0 Ticket 15533 – recommendation 5.5.1
updated description

9/01/2022 1.2.0 Ticket 15539 – recommendation 5.4.3
updated remediation process

9/01/2022 1.2.0 Ticket 15614 – recommendation 3.2.1
updated remediation process

9/01/2022 1.2.0 Ticket 17054 – recommendation 5.4.1
updated for EKS specifically

	Terms of Use
	Table of Contents
	Overview
	Important Usage Information
	Key Stakeholders
	Apply the Correct Version of a Benchmark
	Exceptions
	Remediation
	Summary

	Target Technology Details
	Intended Audience
	Consensus Guidance
	Typographical Conventions

	Recommendation Definitions
	Title
	Assessment Status
	Automated
	Manual

	Profile
	Description
	Rationale Statement
	Impact Statement
	Audit Procedure
	Remediation Procedure
	Default Value
	References
	CIS Critical Security Controls® (CIS Controls®)
	Additional Information
	Profile Definitions
	Acknowledgements

	Recommendations
	1 Control Plane Components
	2 Control Plane Configuration
	2.1 Logging
	2.1.1 Enable audit Logs (Automated)
	2.1.2 Ensure audit logs are collected and managed (Manual)

	3 Worker Nodes
	3.1 Worker Node Configuration Files
	3.1.1 Ensure that the kubeconfig file permissions are set to 644 or more restrictive (Automated)
	3.1.2 Ensure that the kubelet kubeconfig file ownership is set to root:root (Automated)
	3.1.3 Ensure that the kubelet configuration file has permissions set to 644 or more restrictive (Automated)
	3.1.4 Ensure that the kubelet configuration file ownership is set to root:root (Automated)

	3.2 Kubelet
	3.2.1 Ensure that the Anonymous Auth is Not Enabled (Automated)
	3.2.2 Ensure that the --authorization-mode argument is not set to AlwaysAllow (Automated)
	3.2.3 Ensure that a Client CA File is Configured (Automated)
	3.2.4 Ensure that the --read-only-port is disabled (Automated)
	3.2.5 Ensure that the --streaming-connection-idle-timeout argument is not set to 0 (Automated)
	3.2.6 Ensure that the --make-iptables-util-chains argument is set to true (Automated)
	3.2.7 Ensure that the --eventRecordQPS argument is set to 0 or a level which ensures appropriate event capture (Automated)
	3.2.8 Ensure that the --rotate-certificates argument is not present or is set to true (Automated)
	3.2.9 Ensure that the RotateKubeletServerCertificate argument is set to true (Automated)

	4 Policies
	4.1 RBAC and Service Accounts
	4.1.1 Ensure that the cluster-admin role is only used where required (Automated)
	4.1.2 Minimize access to secrets (Automated)
	4.1.3 Minimize wildcard use in Roles and ClusterRoles (Automated)
	4.1.4 Minimize access to create pods (Automated)
	4.1.5 Ensure that default service accounts are not actively used. (Automated)
	4.1.6 Ensure that Service Account Tokens are only mounted where necessary (Automated)
	4.1.7 Cluster Access Manager API to streamline and enhance the management of access controls within EKS clusters (Automated)
	4.1.8 Limit use of the Bind, Impersonate and Escalate permissions in the Kubernetes cluster (Manual)

	4.2 Pod Security Standards
	4.2.1 Minimize the admission of privileged containers (Automated)
	4.2.2 Minimize the admission of containers wishing to share the host process ID namespace (Automated)
	4.2.3 Minimize the admission of containers wishing to share the host IPC namespace (Automated)
	4.2.4 Minimize the admission of containers wishing to share the host network namespace (Automated)
	4.2.5 Minimize the admission of containers with allowPrivilegeEscalation (Automated)

	4.3 CNI Plugin
	4.3.1 Ensure CNI plugin supports network policies. (Manual)
	4.3.2 Ensure that all Namespaces have Network Policies defined (Automated)

	4.4 Secrets Management
	4.4.1 Prefer using secrets as files over secrets as environment variables (Automated)
	4.4.2 Consider external secret storage (Manual)

	4.5 General Policies
	4.5.1 Create administrative boundaries between resources using namespaces (Manual)
	4.5.2 The default namespace should not be used (Automated)

	5 Managed services
	5.1 Image Registry and Image Scanning
	5.1.1 Ensure Image Vulnerability Scanning using Amazon ECR image scanning or a third party provider (Automated)
	5.1.2 Minimize user access to Amazon ECR (Manual)
	5.1.3 Minimize cluster access to read-only for Amazon ECR (Manual)
	5.1.4 Minimize Container Registries to only those approved (Manual)

	5.2 Identity and Access Management (IAM)
	5.2.1 Prefer using dedicated EKS Service Accounts (Automated)

	5.3 AWS EKS Key Management Service
	5.3.1 Ensure Kubernetes Secrets are encrypted using Customer Master Keys (CMKs) managed in AWS KMS (Manual)

	5.4 Cluster Networking
	5.4.1 Restrict Access to the Control Plane Endpoint (Automated)
	5.4.2 Ensure clusters are created with Private Endpoint Enabled and Public Access Disabled (Automated)
	5.4.3 Ensure clusters are created with Private Nodes (Automated)
	5.4.4 Ensure Network Policy is Enabled and set as appropriate (Automated)
	5.4.5 Encrypt traffic to HTTPS load balancers with TLS certificates (Manual)

	5.5 Authentication and Authorization
	5.5.1 Manage Kubernetes RBAC users with AWS IAM Authenticator for Kubernetes or Upgrade to AWS CLI v1.16.156 or greater (Manual)

	Appendix: Summary Table
	Appendix: CIS Controls v7 IG 1 Mapped Recommendations
	Appendix: CIS Controls v7 IG 2 Mapped Recommendations
	Appendix: CIS Controls v7 IG 3 Mapped Recommendations
	Appendix: CIS Controls v7 Unmapped Recommendations
	Appendix: CIS Controls v8 IG 1 Mapped Recommendations
	Appendix: CIS Controls v8 IG 2 Mapped Recommendations
	Appendix: CIS Controls v8 IG 3 Mapped Recommendations
	Appendix: CIS Controls v8 Unmapped Recommendations
	Appendix: Change History

