
	

	

	 	

	

	

CIS	PostgreSQL	13	Benchmark	
	
v1.0.0	-	02-26-2021																																																											

	

	

1	|	P a g e 	
	

Terms	of	Use	
Please see the below link for our current terms of use:
https://www.cisecurity.org/cis-securesuite/cis-securesuite-membership-terms-of-use/	

	 	

	

2	|	P a g e 	
	

Table	of	Contents	

Terms	of	Use	...	1

Overview	..	5

Intended	Audience	..	5

Consensus	Guidance	...	5

Typographical	Conventions	..	6

Assessment	Status	...	6

Profile	Definitions	..	7

Acknowledgements	...	8

Recommendations	..	9

1	Installation	and	Patches	..	9

1.1	Ensure	packages	are	obtained	from	authorized	repositories	(Manual)	9	

1.2	Ensure	systemd	Service	Files	Are	Enabled	(Automated)	..	13	

1.3	Ensure	Data	Cluster	Initialized	Successfully	(Automated)	15	

2	Directory	and	File	Permissions	...	17

2.1	Ensure	the	file	permissions	mask	is	correct	(Manual)	...	17	

2.2	Ensure	the	PostgreSQL	pg_wheel	group	membership	is	correct	(Manual)	19	

3	Logging	Monitoring	And	Auditing	...	22

3.1	PostgreSQL	Logging	...	22	

3.1.1	Logging	Rationale	..	22

3.1.2	Ensure	the	log	destinations	are	set	correctly	(Automated)	22	

3.1.3	Ensure	the	logging	collector	is	enabled	(Automated)	...	25	

3.1.4	Ensure	the	log	file	destination	directory	is	set	correctly	(Automated)	27	

3.1.5	Ensure	the	filename	pattern	for	log	files	is	set	correctly	(Automated)	29	

3.1.6	Ensure	the	log	file	permissions	are	set	correctly	(Automated)	32	

3.1.7	Ensure	'log_truncate_on_rotation'	is	enabled	(Automated)	34	

3.1.8	Ensure	the	maximum	log	file	lifetime	is	set	correctly	(Automated)	37	

3.1.9	Ensure	the	maximum	log	file	size	is	set	correctly	(Automated)	39	

3.1.10	Ensure	the	correct	syslog	facility	is	selected	(Automated)	41	

	

3	|	P a g e 	
	

3.1.11	Ensure	the	program	name	for	PostgreSQL	syslog	messages	is	correct	
(Automated)	...	43	

3.1.12	Ensure	the	correct	messages	are	written	to	the	server	log	(Automated)	...	45	

3.1.13	Ensure	the	correct	SQL	statements	generating	errors	are	recorded	
(Automated)	...	47	

3.1.14	Ensure	'debug_print_parse'	is	disabled	(Automated)	..	49	

3.1.15	Ensure	'debug_print_rewritten'	is	disabled	(Automated)	51	

3.1.16	Ensure	'debug_print_plan'	is	disabled	(Automated)	...	53	

3.1.17	Ensure	'debug_pretty_print'	is	enabled	(Automated)	..	55	

3.1.18	Ensure	'log_connections'	is	enabled	(Automated)	...	57	

3.1.19	Ensure	'log_disconnections'	is	enabled	(Automated)	..	59	

3.1.20	Ensure	'log_error_verbosity'	is	set	correctly	(Automated)	61	

3.1.21	Ensure	'log_hostname'	is	set	correctly	(Automated)	..	63	

3.1.22	Ensure	'log_line_prefix'	is	set	correctly	(Automated)	...	65	

3.1.23	Ensure	'log_statement'	is	set	correctly	(Automated)	...	68	

3.1.24	Ensure	'log_timezone'	is	set	correctly	(Automated)	...	71	

3.2	Ensure	the	PostgreSQL	Audit	Extension	(pgAudit)	is	enabled	(Automated)	...	73	

4	User	Access	and	Authorization	...	77

4.1	Ensure	sudo	is	configured	correctly	(Manual)	..	77	

4.2	Ensure	excessive	administrative	privileges	are	revoked	(Manual)	79	

4.3	Ensure	excessive	function	privileges	are	revoked	(Automated)	82	

4.4	Ensure	excessive	DML	privileges	are	revoked	(Manual)	..	85	

4.5	Use	pg_permission	extension	to	audit	object	permissions	(Automated)	89	

4.6	Ensure	Row	Level	Security	(RLS)	is	configured	correctly	(Manual)	93	

4.7	Ensure	the	set_user	extension	is	installed	(Automated)	...	97	

4.8	Make	use	of	default	roles	(Manual)	...	104	

5	Connection	and	Login	...	106

5.1	Ensure	login	via	"local"	UNIX	Domain	Socket	is	configured	correctly	(Manual)
	...	106	

5.2	Ensure	login	via	"host"	TCP/IP	Socket	is	configured	correctly	(Manual)	110	

6	PostgreSQL	Settings	..	114

	

4	|	P a g e 	
	

6.1	Ensure	'Attack	Vectors'	Runtime	Parameters	are	Configured	(Manual)	114	

6.2	Ensure	'backend'	runtime	parameters	are	configured	correctly	(Automated)
	...	116	

6.3	Ensure	'Postmaster'	Runtime	Parameters	are	Configured	(Manual)	118	

6.4	Ensure	'SIGHUP'	Runtime	Parameters	are	Configured	(Manual)	121	

6.5	Ensure	'Superuser'	Runtime	Parameters	are	Configured	(Manual)	125	

6.6	Ensure	'User'	Runtime	Parameters	are	Configured	(Manual)	128	

6.7	Ensure	FIPS	140-2	OpenSSL	Cryptography	Is	Used	(Automated)	132	

6.8	Ensure	SSL	is	enabled	and	configured	correctly	(Automated)	135	

6.9	Ensure	the	pgcrypto	extension	is	installed	and	configured	correctly	(Manual)
	...	138	

7	Replication	..	141

7.1	Ensure	a	replication-only	user	is	created	and	used	for	streaming	replication	
(Manual)	..	141	

7.2	Ensure	base	backups	are	configured	and	functional	(Manual)	144	

7.3	Ensure	WAL	archiving	is	configured	and	functional	(Automated)	146	

7.4	Ensure	streaming	replication	parameters	are	configured	correctly	(Manual)
	...	148	

8	Special	Configuration	Considerations	...	150

8.1	Ensure	PostgreSQL	configuration	files	are	outside	the	data	cluster	(Manual)
	...	150	

8.2	Ensure	PostgreSQL	subdirectory	locations	are	outside	the	data	cluster	
(Manual)	..	153	

8.3	Ensure	the	backup	and	restore	tool,	'pgBackRest',	is	installed	and	configured	
(Automated)	..	155	

8.4	Ensure	miscellaneous	configuration	settings	are	correct	(Manual)	158	

Appendix:	Summary	Table	...	160

Appendix:	Change	History	..	163

	

	

	 	

	

5	|	P a g e 	
	

Overview	
This	document,	CIS	PostgreSQL	13	Benchmark,	provides	prescriptive	guidance	for	
establishing	a	secure	configuration	posture	for	PostgreSQL	13.	This	guide	was	tested	
against	PostgreSQL	13	running	on	CentOS	8,	but	applies	to	other	Linux	distributions	as	
well.	To	obtain	the	latest	version	of	this	guide,	please	visit	
http://benchmarks.cisecurity.org.	If	you	have	questions,	comments,	or	have	identified	
ways	to	improve	this	guide,	please	write	us	at	feedback@cisecurity.org.	

	

Intended Audience

This	document	is	intended	for	system	and	application	administrators,	security	specialists,	
auditors,	help	desk,	and	platform	deployment	personnel	who	plan	to	develop,	deploy,	
assess,	or	secure	solutions	that	incorporate	PostgreSQL	13.	

	

Consensus Guidance

This	benchmark	was	created	using	a	consensus	review	process	comprised	of	subject	
matter	experts.	Consensus	participants	provide	perspective	from	a	diverse	set	of	
backgrounds	including	consulting,	software	development,	audit	and	compliance,	security	
research,	operations,	government,	and	legal.		

Each	CIS	benchmark	undergoes	two	phases	of	consensus	review.	The	first	phase	occurs	
during	initial	benchmark	development.	During	this	phase,	subject	matter	experts	convene	
to	discuss,	create,	and	test	working	drafts	of	the	benchmark.	This	discussion	occurs	until	
consensus	has	been	reached	on	benchmark	recommendations.	The	second	phase	begins	
after	the	benchmark	has	been	published.	During	this	phase,	all	feedback	provided	by	the	
Internet	community	is	reviewed	by	the	consensus	team	for	incorporation	in	the	
benchmark.	If	you	are	interested	in	participating	in	the	consensus	process,	please	visit	
https://workbench.cisecurity.org/.	

	 	

	

6	|	P a g e 	
	

Typographical Conventions

The	following	typographical	conventions	are	used	throughout	this	guide:	

Convention	 Meaning	

Stylized Monospace font Used	for	blocks	of	code,	command,	and	script	examples.	
Text	should	be	interpreted	exactly	as	presented.	

Monospace font Used	for	inline	code,	commands,	or	examples.	Text	should	
be	interpreted	exactly	as	presented.		

<italic	font	in	brackets>	 Italic	texts	set	in	angle	brackets	denote	a	variable	
requiring	substitution	for	a	real	value.	

Italic	font	 Used	to	denote	the	title	of	a	book,	article,	or	other	
publication.	

Note	 Additional	information	or	caveats	

	

Assessment Status

An	assessment	status	is	included	for	every	recommendation.	The	assessment	status	
indicates	whether	the	given	recommendation	can	be	automated	or	requires	manual	steps	
to	implement.	Both	statuses	are	equally	important	and	are	determined	and	supported	as	
defined	below:		

Automated	

Represents	recommendations	for	which	assessment	of	a	technical	control	can	be	fully	
automated	and	validated	to	a	pass/fail	state.	Recommendations	will	include	the	necessary	
information	to	implement	automation.	

Manual	

Represents	recommendations	for	which	assessment	of	a	technical	control	cannot	be	fully	
automated	and	requires	all	or	some	manual	steps	to	validate	that	the	configured	state	is	set	
as	expected.	The	expected	state	can	vary	depending	on	the	environment.	

	

	 	

	

7	|	P a g e 	
	

Profile Definitions

The	following	configuration	profiles	are	defined	by	this	Benchmark:	

• Level	1	-	PostgreSQL	

Items	in	this	profile	apply	to	PostgreSQL	13	and	intend	to:	

o be	practical	and	prudent;	
o provide	a	clear	security	benefit;	and	
o not	inhibit	the	utility	of	the	technology	beyond	acceptable	means.	

Note:	The	intent	of	this	profile	is	to	include	checks	that	can	be	assessed	by	remotely	
connecting	to	PostgreSQL.	Therefore,	file	system-related	checks	are	not	contained	in	
this	profile.	

• Level	1	-	PostgreSQL	on	Linux	

Items	in	this	profile	apply	to	PostgreSQL	13	running	on	Linux	and	intend	to:	

o be	practical	and	prudent;	
o provide	a	clear	security	benefit;	and	
o not	inhibit	the	utility	of	the	technology	beyond	acceptable	means.	

	

	 	

	

8	|	P a g e 	
	

	

Acknowledgements

This benchmark exemplifies the great things a community of users, vendors, and subject matter
experts can accomplish through consensus collaboration. The CIS community thanks the entire
consensus team with special recognition to the following individuals who contributed greatly to
the creation of this guide:

	
Author	
Douglas	Hunley		
	
Contributor	
Emad	Al-Mousa		
Ross	Moles		
	
Editor	
Tim	Harrison,	Center	for	Internet	Security	 	

	

9	|	P a g e 	
	

Recommendations	
1 Installation and Patches

One	of	the	best	ways	to	ensure	PostgreSQL	security	is	to	implement	security	updates	as	
they	come	out,	along	with	any	applicable	OS	patches	that	will	not	interfere	with	system	
operations.	It	is	additionally	prudent	to	ensure	the	installed	version	has	not	reached	end-
of-life.	

1.1 Ensure packages are obtained from authorized repositories
(Manual)

Profile	Applicability:	

•		Level	1	-	PostgreSQL	on	Linux	

Description:	

Standard	Linux	distributions,	although	possessing	the	requisite	packages,	often	do	not	have	
PostgreSQL	pre-installed.	The	installation	process	includes	installing	the	binaries	and	the	
means	to	generate	a	data	cluster.	Package	installation	should	include	both	the	server	and	
client	packages.	Contribution	modules	are	optional	depending	upon	one's	architectural	
requirements	(they	are	recommended	though).	

When	obtaining	and	installing	software	packages	(typically	via	dnf	or	apt),	it's	imperative	
that	packages	are	sourced	only	from	valid	and	authorized	repositories.	For	PostgreSQL,	the	
canonical	repositories	are	the	official	PostgreSQL	YUM	repository	(yum.postgresql.org)	and	
the	official	PostgreSQL	APT	repository	(apt.postgresql.org).	Your	chosen	PostgreSQL	
vendor	may	offer	their	own	software	repositories	as	well.	

Rationale:	

Being	open	source,	PostgreSQL	packages	are	widely	available	across	the	internet	through	
package	aggregators	and	providers.	However,	using	invalid	or	unauthorized	sources	for	
packages	can	lead	to	implementing	untested,	defective,	or	malicious	software.	

Many	organizations	choose	to	implement	a	local	software	repository	within	their	
organization.	Care	must	be	taken	to	ensure	that	only	valid	and	authorized	packages	are	
downloaded	and	installed	into	such	local	repositories.	

	

10	|	P a g e 	
	

From	a	security	perspective,	it's	imperative	to	verify	the	PostgreSQL	binary	packages	are	
sourced	from	a	valid	software	repository.	For	a	complete	listing	of	all	PostgreSQL	binaries	
available	via	configured	repositories	inspect	the	output	from	dnf provides '*libpq.so'	
or	apt-file search /usr/pgsql-13/lib/libpq.so.5.	

Audit:	

Identify	and	inspect	configured	repositories	to	ensure	they	are	all	valid	and	authorized	
sources	of	packages.	The	following	is	an	example	of	a	simple	CentOS	8	install	illustrating	
the	use	of	the	dnf repolist all	command.	

$ whoami
root
$ dnf repolist all | egrep 'enabled$'
AppStream CentOS-8 - AppStream enabled
BaseOS CentOS-8 - Base enabled
extras CentOS-8 - Extras enabled

Ensure	the	list	of	configured	repositories	only	includes	organization-approved	repositories.	
If	any	unapproved	repositories	are	listed,	this	is	a	fail.	

To	inspect	what	versions	of	PostgreSQL	packages	are	currently	installed,	and	which	repo	
they	came	from,	we	can	query	using	the	dnf	and	rpm	commands.	As	illustrated	below,	
PostgreSQL	13.0	packages	are	installed:

whoami
root
dnf info $(rpm -qa|grep postgres) | egrep '^Name|^Version|^From'
Name : postgresql13
Version : 13.0
From repo : pgdg13
Name : postgresql13-contrib
Version : 13.0
From repo : pgdg13
Name : postgresql13-libs
Version : 13.0
From repo : pgdg12
Name : postgresql13-server
Version : 13.0
From repo : pgdg13

If	the	expected	binary	packages	are	not	installed,	are	not	the	expected	versions	(as	above),	
or	did	not	come	from	an	appropriate	repo,	this	is	a	fail.

Remediation:	

Alter	the	configured	repositories	so	they	only	include	valid	and	authorized	sources	of	
packages.	

	

11	|	P a g e 	
	

As	an	example	of	adding	an	authorized	repository,	we	will	install	the	PGDG	repository	RPM	
from	'yum.postgresql.org'	(note	that	because	of	a	change	in	the	way	packaging	is	handled	in	
RHEL	8,	we	also	need	to	disable	the	Red	Hat	built-in	PostgreSQL	module):	

whoami
root
dnf install -y https://download.postgresql.org/pub/repos/yum/reporpms/EL-8-
x86_64/pgdg-redhat-repo-latest.noarch.rpm
Last metadata expiration check: 0:01:35 ago on Fri 04 Oct 2019 01:19:37 PM
EDT.
[snip]
Installed:
 pgdg-redhat-repo-42.0-11.noarch

Complete!
dnf -qy module disable postgresql

Verify	the	repository	has	been	added	and	is	enabled:

whoami
root
dnf repolist all | egrep 'enabled$'
AppStream CentOS-8 - AppStream enabled
BaseOS CentOS-8 - Base enabled
extras CentOS-8 - Extras enabled
pgdg-common PostgreSQL common RPMs for RHEL/CentOS enabled
pgdg10 PostgreSQL 10 for RHEL/CentOS 8 - x86_ enabled
pgdg11 PostgreSQL 11 for RHEL/CentOS 8 - x86_ enabled
pgdg12 PostgreSQL 12 for RHEL/CentOS 8 - x86_ enabled
pgdg13 PostgreSQL 13 for RHEL/CentOS 8 - x86_ enabled
pgdg95 PostgreSQL 9.5 for RHEL/CentOS 8 - x86 enabled
pgdg96 PostgreSQL 9.6 for RHEL/CentOS 8 - x86 enabled

If	the	version	of	PostgreSQL	installed	is	not	13.x	or	they	did	not	come	from	a	valid	
repository,	the	packages	may	be	uninstalled	using	this	command:

$ whoami
root
$ dnf remove $(rpm -qa|grep postgres)

To	install	the	PGDG	rpms	for	PostgreSQL	13.x,	run:

$ whoami
root
$ dnf -y groupinstall 'PostgreSQL Database Server 13 PGDG'
<snip>
Installing group/module packages:
 postgresql13 x86_64 13.0-1PGDG.rhel8 pgdg13 1.6 M
 postgresql13-contrib x86_64 13.0-1PGDG.rhel8 pgdg13 663 k
 postgresql13-libs x86_64 13.0-1PGDG.rhel8 pgdg13 431 k
 postgresql13-server x86_64 13.0-1PGDG.rhel8 pgdg13 6.1 M
Installing dependencies:

	

12	|	P a g e 	
	

 libicu x86_64 60.3-2.el8_1 BaseOS 8.8 M
 libxslt x86_64 1.1.32-4.el8 BaseOS 249 k
Installing Groups:
 PostgreSQL Database Server 13 PGDG
<snip>
Installed:
 libicu-60.3-2.el8_1.x86_64 libxslt-1.1.32-4.el8.x86_64
 postgresql13-13.0-1PGDG.rhel8.x86_64 postgresql13-contrib-13.0-
1PGDG.rhel8.x86_64
 postgresql13-libs-13.0-1PGDG.rhel8.x86_64 postgresql13-server-13.0-
1PGDG.rhel8.x86_64

Complete!

References:

1. https://wiki.centos.org/PackageManagement/Yum/	
2. https://www.centos.org/docs/5/html/5.2/Deployment_Guide/s1-yum-yumconf-

repository.html	
3. https://en.wikipedia.org/wiki/Yum_(software)	
4. https://www.howtoforge.com/creating_a_local_yum_repository_centos	
5. https://yum.postgresql.org	
6. https://apt.postgresql.org	

CIS	Controls:	

Version	6	

	 2	Inventory	of	Authorized	and	Unauthorized	Software	
	 Inventory	of	Authorized	and	Unauthorized	Software	

Version	7	

	 2.1	Maintain	Inventory	of	Authorized	Software	
	 Maintain	an	up-to-date	list	of	all	authorized	software	that	is	required	in	the	enterprise	
for	any	business	purpose	on	any	business	system.	

	

13	|	P a g e 	
	

1.2 Ensure systemd Service Files Are Enabled (Automated)

Profile	Applicability:	

•		Level	1	-	PostgreSQL	on	Linux	

Description:	

Confirm,	and	correct	if	necessary,	the	PostgreSQL	systemd	service	is	enabled.	

Rationale:	

Enabling	the	systemd	service	on	the	OS	ensures	the	database	service	is	active	when	a	
change	of	state	occurs	as	in	the	case	of	a	system	startup	or	reboot.	

Audit:	

The	default	operating	target	on	systemd-powered	operating	systems	is	typically	"multi-
user".	One	confirms	the	default	target	by	executing	the	following:	

$ whoami
root
$ systemctl get-default
multi-user.target
$ systemctl list-dependencies multi-user.target | grep -i postgres

If	the	intended	PostgreSQL	service	is	not	registered	as	a	dependency	(or	"want")	of	the	
default	target	(no	output	for	the	3rd	command	above),	this	is	a	fail.

Remediation:	

Irrespective	of	package	source,	PostgreSQL	services	can	be	identified	because	it	typically	
includes	the	text	string	"postgresql".	PGDG	installs	do	not	automatically	register	the	service	
as	a	"want"	of	the	default	systemd	target.	Multiple	instances	of	PostgreSQL	services	often	
distinguish	themselves	using	a	version	number.	

whoami
root
systemctl enable postgresql-13
Created symlink /etc/systemd/system/multi-user.target.wants/postgresql-
13.service → /usr/lib/systemd/system/postgresql-13.service.
systemctl list-dependencies multi-user.target | grep -i postgres
● ├─postgresql-13.service

References:

1. https://linuxcommand.org/man_pages/runlevel8.html	

	

14	|	P a g e 	
	

2. https://linuxcommand.org/man_pages/chkconfig8.html	
3. https://www.tldp.org/LDP/sag/html/run-levels-intro.html	

CIS	Controls:	

Version	6	

	 18	Application	Software	Security	
	 Application	Software	Security	

Version	7	

	 5.1	Establish	Secure	Configurations	
	 Maintain	documented,	standard	security	configuration	standards	for	all	authorized	
operating	systems	and	software.	

	

15	|	P a g e 	
	

1.3 Ensure Data Cluster Initialized Successfully (Automated)

Profile	Applicability:	

•		Level	1	-	PostgreSQL	on	Linux	

Description:	

First	time	installs	of	PostgreSQL	requires	the	instantiation	of	the	database	cluster.	A	
database	cluster	is	a	collection	of	databases	that	are	managed	by	a	single	server	instance.	

Rationale:	

For	the	purposes	of	security,	PostgreSQL	enforces	ownership	and	permissions	of	the	data-
cluster	such	that:	

• An	initialized	data-cluster	is	owned	by	the	UNIX	account	that	created	it.	
• The	data-cluster	cannot	be	accessed	by	other	UNIX	user-accounts.	
• The	data-cluster	cannot	be	created	or	owned	by	root		
• The	PostgreSQL	process	cannot	be	invoked	by	root	nor	any	UNIX	user	account	

other	than	the	owner	of	the	data	cluster.	

Incorrectly	instantiating	the	data-cluster	will	result	in	a	failed	installation.	

Audit:	

Assuming	you	are	installing	the	PostgreSQL	binary	package	from	the	PGDG	repository,	the	
standard	method,	as	root,	is	to	instantiate	the	cluster	thusly:	

whoami
root
PGSETUP_INITDB_OPTIONS="-k" /usr/pgsql-13/bin/postgresql-13-setup initdb
Initializing database ... OK

A	correctly	installed	data-cluster	possesses	directory	permissions	similar	to	the	following	
example.	Otherwise,	the	service	will	fail	to	start:

whoami
root
ls -la ~postgres/13
total 8
drwx------. 4 postgres postgres 51 Oct 4 14:01 .
drwx------. 3 postgres postgres 37 Oct 4 13:54 ..
drwx------. 2 postgres postgres 6 Oct 1 06:18 backups
drwx------. 20 postgres postgres 4096 Oct 4 14:01 data
-rw-------. 1 postgres postgres 923 Oct 4 14:01 initdb.log

	

16	|	P a g e 	
	

You	can	verify	the	PGDATA	has	sane	permissions	and	attributes	by	running:

$ whoami
postgres
$ /usr/pgsql-13/bin/postgresql-13-check-db-dir ~postgres/13/data
$ echo $?
0

As	long	as	the	return	code	is	zero(0),	as	shown,	everything	is	fine.

Remediation:	

Attempting	to	instantiate	a	data	cluster	to	an	existing	non-empty	directory	will	fail:	

whoami
root
PGSETUP_INITDB_OPTIONS="-k" /usr/pgsql-13/bin/postgresql-13-setup initdb
Data directory is not empty!

In	the	case	of	a	cluster	instantiation	failure,	one	must	delete/remove	the	entire	data	cluster	
directory	and	repeat	the	initdb	command:

whoami
root
rm -rf ~postgres/13
PGSETUP_INITDB_OPTIONS="-k" /usr/pgsql-13/bin/postgresql-13-setup initdb
Initializing database ... OK

CIS	Controls:

Version	6	

	 14.4	Protect	Information	With	Access	Control	Lists	
	 All	information	stored	on	systems	shall	be	protected	with	file	system,	network	share,	
claims,	application,	or	database	specific	access	control	lists.	These	controls	will	enforce	the	
principle	that	only	authorized	individuals	should	have	access	to	the	information	based	on	
their	need	to	access	the	information	as	a	part	of	their	responsibilities.	

Version	7	

	 14.6	Protect	Information	through	Access	Control	Lists	
	 Protect	all	information	stored	on	systems	with	file	system,	network	share,	claims,	
application,	or	database	specific	access	control	lists.	These	controls	will	enforce	the	
principle	that	only	authorized	individuals	should	have	access	to	the	information	based	on	
their	need	to	access	the	information	as	a	part	of	their	responsibilities.	

	

17	|	P a g e 	
	

2 Directory and File Permissions

This	section	provides	guidance	on	securing	all	operating	system	specific	objects	for	
PostgreSQL.	

2.1 Ensure the file permissions mask is correct (Manual)

Profile	Applicability:	

•		Level	1	-	PostgreSQL	on	Linux	

Description:	

Files	are	always	created	using	a	default	set	of	permissions.	File	permissions	can	be	
restricted	by	applying	a	permissions	mask	called	the	umask.	The	postgres	user	account	
should	use	a	umask	of	077	to	deny	file	access	to	all	user	accounts	except	the	owner.	

Rationale:	

The	Linux	OS	defaults	the	umask	to	002,	which	means	the	owner	and	primary	group	can	
read	and	write	the	file,	and	other	accounts	are	permitted	to	read	the	file.	Not	explicitly	
setting	the	umask	to	a	value	as	restrictive	as	077	allows	other	users	to	read,	write,	or	even	
execute	files	and	scripts	created	by	the	postgres	user	account.	The	alternative	to	using	a	
umask	is	explicitly	updating	file	permissions	after	file	creation	using	the	command	line	
utility	chmod	(a	manual	and	error	prone	process	that	is	not	advised).	

Audit:	

To	view	the	mask's	current	setting,	execute	the	following	commands:	

$ whoami
root
$ su - postgres
$ whoami
postgres
$ umask
0022

The	umask	must	be	077	or	more	restrictive	for	the	postgres	user,	otherwise	this	is	a	fail.

Remediation:	

Depending	upon	the	postgres	user's	environment,	the	umask	is	typically	set	in	the	
initialization	file	.bash_profile,	but	may	also	be	set	in	.profile	or	.bashrc.	To	set	the	
umask,	add	the	following	to	the	appropriate	profile	file:	

	

18	|	P a g e 	
	

$ whoami
postgres
$ cd ~
$ ls -ld .{bash_profile,profile,bashrc}
ls: cannot access .profile: No such file or directory
ls: cannot access .bashrc: No such file or directory
-rwx------. 1 postgres postgres 267 Aug 14 12:59 .bash_profile
$ echo "umask 077" >> .bash_profile
$ source .bash_profile
$ umask
0077

Default	Value:

0022	

CIS	Controls:	

Version	6	

	 14.4	Protect	Information	With	Access	Control	Lists	
	 All	information	stored	on	systems	shall	be	protected	with	file	system,	network	share,	
claims,	application,	or	database	specific	access	control	lists.	These	controls	will	enforce	the	
principle	that	only	authorized	individuals	should	have	access	to	the	information	based	on	
their	need	to	access	the	information	as	a	part	of	their	responsibilities.	

Version	7	

	 14.6	Protect	Information	through	Access	Control	Lists	
	 Protect	all	information	stored	on	systems	with	file	system,	network	share,	claims,	
application,	or	database	specific	access	control	lists.	These	controls	will	enforce	the	
principle	that	only	authorized	individuals	should	have	access	to	the	information	based	on	
their	need	to	access	the	information	as	a	part	of	their	responsibilities.	

	

19	|	P a g e 	
	

2.2 Ensure the PostgreSQL pg_wheel group membership is correct
(Manual)

Profile	Applicability:	

•		Level	1	-	PostgreSQL	on	Linux	

Description:	

The	group	pg_wheel	is	explicitly	created	on	a	host	where	the	PostgreSQL	server	is	installed.	
Membership	in	this	group	enables	an	ordinary	user	account	to	gain	'superuser'	access	to	a	
database	cluster	by	using	the	sudo	command	(See	'Ensure	sudo	is	configured	correctly'	
later	in	this	benchmark).	Only	user	accounts	authorized	to	have	superuser	access	should	be	
members	of	the	pg_wheel	group.	

Rationale:	

Users	with	unauthorized	membership	in	the	pg_wheel	group	can	assume	the	privileges	of	
the	owner	of	the	PostgreSQL	RDBMS	and	administer	the	database,	as	well	as	accessing	
scripts,	files,	and	other	executables	they	should	not	be	able	to	access.	

Audit:	

Execute	the	command	getent	to	confirm	that	a	pg_wheel	group	exists.	If	no	such	group	
exists,	this	is	a	fail:	

$ whoami
root
$ # no output (below) means the group does not exist
$ getent group pg_wheel

If	such	a	group	does	exist,	view	its	membership	and	confirm	that	each	user	is	authorized	to	
act	as	an	administrator;

$ whoami
root
$ # when the group exists, the command shows the 'group id' (GID)
$ getent group pg_wheel
pg_wheel:x:502:
$ # since the group exists, list its members thusly
$ awk -F':' '/pg_wheel/{print $4}' /etc/group
$ # empty output == no members	

	

20	|	P a g e 	
	

Remediation:

If	the	pg_wheel	group	does	not	exist,	use	the	following	command	to	create	it:	

$ whoami
root
$ groupadd pg_wheel && getent group pg_wheel
pg_wheel:x:502:

Note:	that	your	system's	group	number	may	not	be	502.	That's	OK.	

Adding	the	postgres	user	to	the	newly	created	group	is	done	by	issuing:

$ whoami
root
$ gpasswd -a postgres pg_wheel
Adding user postgres to group pg_wheel
$ # verify membership
$ awk -F':' '/pg_wheel/{print $4}' /etc/group
postgres

Removing	a	user	account	from	the	'pg_wheel'	group	is	achieved	by	executing	the	following	
command:

$ whoami
root
$ gpasswd -d postgres pg_wheel
Removing user postgres from group pg_wheel
$ # verify the user was removed
$ awk -F':' '/pg_wheel/{print $4}' /etc/group

References:

1. https://man7.org/linux/man-pages/man1/groups.1.html	
2. https://man7.org/linux/man-pages/man8/getent.1.html	
3. https://man7.org/linux/man-pages/man8/gpasswd.1.html	
4. https://man7.org/linux/man-pages/man8/useradd.8.html	
5. https://en.wikipedia.org/wiki/Wheel_%28Unix_term%29	

CIS	Controls:	

Version	6	

	 14.4	Protect	Information	With	Access	Control	Lists	
	 All	information	stored	on	systems	shall	be	protected	with	file	system,	network	share,	
claims,	application,	or	database	specific	access	control	lists.	These	controls	will	enforce	the	
principle	that	only	authorized	individuals	should	have	access	to	the	information	based	on	
their	need	to	access	the	information	as	a	part	of	their	responsibilities.	

	

21	|	P a g e 	
	

Version	7	

	 14.6	Protect	Information	through	Access	Control	Lists	
	 Protect	all	information	stored	on	systems	with	file	system,	network	share,	claims,	
application,	or	database	specific	access	control	lists.	These	controls	will	enforce	the	
principle	that	only	authorized	individuals	should	have	access	to	the	information	based	on	
their	need	to	access	the	information	as	a	part	of	their	responsibilities.	 	

	

22	|	P a g e 	
	

3 Logging Monitoring And Auditing

This	section	provides	guidance	with	respect	to	PostgreSQL's	auditing	and	logging	behavior.	

3.1 PostgreSQL Logging

This	section	provides	guidance	with	respect	to	PostgreSQL's	logging	behavior	as	it	applies	
to	security	and	auditing.	PostgreSQL	contains	significantly	more	logging	options	that	are	
not	audit	and/or	security	related	(and	as	such,	are	not	covered	herein).	

3.1.1 Logging Rationale

Having	an	audit	trail	is	an	important	feature	of	any	relational	database	system.	You	want	
enough	detail	to	describe	when	an	event	of	interest	has	started	and	stopped,	what	the	
event	is/was,	the	event's	cause,	and	what	the	event	did/is	doing	to	the	system.	

Ideally,	the	logged	information	is	in	a	format	permitting	further	analysis	giving	us	new	
perspectives	and	insight.	

The	PostgreSQL	configuration	file	postgresql.conf	is	where	all	adjustable	parameters	can	
be	set.	A	configuration	file	is	created	as	part	of	the	data	cluster's	creation	i.e.	initdb.	The	
configuration	file	enumerates	all	tunable	parameters	and	even	though	most	of	them	are	
commented	out	it	is	understood	that	they	are	in	fact	active	and	at	those	very	same	
documented	values.	The	reason	that	they	are	commented	out	is	to	signify	their	default	
values.	Uncommenting	them	will	force	the	server	to	read	these	values	instead	of	using	the	
default	values.	

3.1.2 Ensure the log destinations are set correctly (Automated)

Profile	Applicability:	

•		Level	1	-	PostgreSQL	

•		Level	1	-	PostgreSQL	on	Linux	

Description:	

PostgreSQL	supports	several	methods	for	logging	server	messages,	including	stderr,	
csvlog	and	syslog.	On	Windows,	eventlog	is	also	supported.	One	or	more	of	these	
destinations	should	be	set	for	server	log	output.	

	 	

	

23	|	P a g e 	
	

Rationale:	

If	log_destination	is	not	set,	then	any	log	messages	generated	by	the	core	PostgreSQL	
processes	will	be	lost.	

Audit:	

Execute	the	following	SQL	statement	to	view	the	currently	active	log	destinations:	

postgres=# show log_destination;
 log_destination

 stderr
(1 row)

The	log	destinations	should	comply	with	your	organization's	policies	on	logging.	If	all	the	
expected	log	destinations	are	not	set,	this	is	a	fail.

Remediation:	

Execute	the	following	SQL	statements	to	remediate	this	setting	(in	this	example,	setting	the	
log	destination	to	csvlog):	

postgres=# alter system set log_destination = 'csvlog';
ALTER SYSTEM
postgres=# select pg_reload_conf();
 pg_reload_conf

 t
(1 row)

Note:	If	more	than	one	log	destination	is	to	be	used,	set	this	parameter	to	a	list	of	desired	
log	destinations	separated	by	commas	(e.g.	'csvlog, stderr').

Default	Value:	

stderr	

References:	

1. https://www.postgresql.org/docs/current/runtime-config-logging.html	

Additional	Information:	

logging_collector	(detailed	in	the	next	section)	must	be	enabled	to	generate	CSV-format	
log	output.	 	

	

24	|	P a g e 	
	

CIS	Controls:	

Version	6	

	 6.2	Ensure	Audit	Log	Settings	Support	Appropriate	Log	Entry	Formatting	
	 Validate	audit	log	settings	for	each	hardware	device	and	the	software	installed	on	it,	
ensuring	that	logs	include	a	date,	timestamp,	source	addresses,	destination	addresses,	and	
various	other	useful	elements	of	each	packet	and/or	transaction.	Systems	should	record	
logs	in	a	standardized	format	such	as	syslog	entries	or	those	outlined	by	the	Common	Event	
Expression	initiative.	If	systems	cannot	generate	logs	in	a	standardized	format,	log	
normalization	tools	can	be	deployed	to	convert	logs	into	such	a	format.	

Version	7	

	 6.2	Activate	audit	logging	
	 Ensure	that	local	logging	has	been	enabled	on	all	systems	and	networking	devices.	

	 6.3	Enable	Detailed	Logging	
	 Enable	system	logging	to	include	detailed	information	such	as	an	event	source,	date,	
user,	timestamp,	source	addresses,	destination	addresses,	and	other	useful	elements.	

	

25	|	P a g e 	
	

3.1.3 Ensure the logging collector is enabled (Automated)

Profile	Applicability:	

•		Level	1	-	PostgreSQL	

•		Level	1	-	PostgreSQL	on	Linux	

Description:	

The	logging	collector	is	a	background	process	that	captures	log	messages	sent	to	stderr	
and	redirects	them	into	log	files.	The	logging_collector	setting	must	be	enabled	in	order	
for	this	process	to	run.	It	can	only	be	set	at	server	start.	

Rationale:	

The	logging	collector	approach	is	often	more	useful	than	logging	to	syslog,	since	some	
types	of	messages	might	not	appear	in	syslog	output.	One	common	example	is	dynamic-
linker	failure	message;	another	may	be	error	messages	produced	by	scripts	such	as	
archive_command.	

Note:	This	setting	must	be	enabled	when	log_destination	is	either	stderr	or	csvlog	and	
for	certain	other	logging	parameters	to	take	effect.	

Audit:	

Execute	the	following	SQL	statement	and	confirm	that	the	logging_collector	is	enabled	
(on):	

postgres=# show logging_collector;
 logging_collector

 on
(1 row)

Remediation:

Execute	the	following	SQL	statement(s)	to	remediate	this	setting:	

postgres=# alter system set logging_collector = 'on';
ALTER SYSTEM	

	

26	|	P a g e 	
	

Unfortunately,	this	setting	can	only	be	changed	at	server	(re)start.	As	root,	restart	the	
PostgreSQL	service	for	this	change	to	take	effect:

whoami
root
systemctl restart postgresql-13
systemctl status postgresql-13|grep 'ago$'
 Active: active (running) since <date>; 1s ago

Default	Value:

on	

References:	

1. https://www.postgresql.org/docs/current/runtime-config-logging.html	

CIS	Controls:	

Version	6	

	 6.2	Ensure	Audit	Log	Settings	Support	Appropriate	Log	Entry	Formatting	
	 Validate	audit	log	settings	for	each	hardware	device	and	the	software	installed	on	it,	
ensuring	that	logs	include	a	date,	timestamp,	source	addresses,	destination	addresses,	and	
various	other	useful	elements	of	each	packet	and/or	transaction.	Systems	should	record	
logs	in	a	standardized	format	such	as	syslog	entries	or	those	outlined	by	the	Common	Event	
Expression	initiative.	If	systems	cannot	generate	logs	in	a	standardized	format,	log	
normalization	tools	can	be	deployed	to	convert	logs	into	such	a	format.	

Version	7	

	 6.2	Activate	audit	logging	
	 Ensure	that	local	logging	has	been	enabled	on	all	systems	and	networking	devices.	

	 6.3	Enable	Detailed	Logging	
	 Enable	system	logging	to	include	detailed	information	such	as	an	event	source,	date,	
user,	timestamp,	source	addresses,	destination	addresses,	and	other	useful	elements.	

	

27	|	P a g e 	
	

3.1.4 Ensure the log file destination directory is set correctly
(Automated)

Profile	Applicability:	

•		Level	1	-	PostgreSQL	

•		Level	1	-	PostgreSQL	on	Linux	

Description:	

The	log_directory	setting	specifies	the	destination	directory	for	log	files	when	
log_destination	is	stderr	or	csvlog.	It	can	be	specified	as	relative	to	the	cluster	data	
directory	($PGDATA)	or	as	an	absolute	path.	log_directory	should	be	set	according	to	your	
organization's	logging	policy.	

Rationale:	

If	log_directory	is	not	set,	it	is	interpreted	as	the	absolute	path	'/'	and	PostgreSQL	will	
attempt	to	write	its	logs	there	(and	typically	fail	due	to	a	lack	of	permissions	to	that	
directory).	This	parameter	should	be	set	to	direct	the	logs	into	the	appropriate	directory	
location	as	defined	by	your	organization's	logging	policy.	

Audit:	

Execute	the	following	SQL	statement	to	confirm	that	the	expected	logging	directory	is	
specified:	

postgres=# show log_directory;
 log_directory

 log
(1 row)

Note:	This	shows	a	path	relative	to	cluster's	data	directory.	An	absolute	path	would	start	
with	a	/	like	the	following:	/var/log/pg_log

Remediation:	

Execute	the	following	SQL	statement(s)	to	remediate	this	setting:	

postgres=# alter system set log_directory='/var/log/postgres';
ALTER SYSTEM
postgres=# select pg_reload_conf();
 pg_reload_conf

28	|	P a g e 	
	

 t
(1 row)
postgres=# show log_directory;
 log_directory

 /var/log/postgres
(1 row)

Note:	The	use	of	/var/log/postgres,	above,	is	an	example.	This	should	be	set	to	an	
appropriate	path	as	defined	by	your	organization's	logging	requirements.	Having	said	that,	
it	is	a	good	idea	to	have	the	logs	outside	of	your	PGDATA	directory	so	that	they	are	not	
included	by	things	like	pg_basebackup	or	pgBackRest.

Default	Value:	

log	which	is	relative	to	the	cluster's	data	directory	(e.g.	
/var/lib/pgsql/<pgmajorversion>/data/log)	

References:	

1. https://www.postgresql.org/docs/current/runtime-config-logging.html	

CIS	Controls:	

Version	6	

	 6.2	Ensure	Audit	Log	Settings	Support	Appropriate	Log	Entry	Formatting	
	 Validate	audit	log	settings	for	each	hardware	device	and	the	software	installed	on	it,	
ensuring	that	logs	include	a	date,	timestamp,	source	addresses,	destination	addresses,	and	
various	other	useful	elements	of	each	packet	and/or	transaction.	Systems	should	record	
logs	in	a	standardized	format	such	as	syslog	entries	or	those	outlined	by	the	Common	Event	
Expression	initiative.	If	systems	cannot	generate	logs	in	a	standardized	format,	log	
normalization	tools	can	be	deployed	to	convert	logs	into	such	a	format.	

Version	7	

	 6.2	Activate	audit	logging	
	 Ensure	that	local	logging	has	been	enabled	on	all	systems	and	networking	devices.	

	 6.3	Enable	Detailed	Logging	
	 Enable	system	logging	to	include	detailed	information	such	as	an	event	source,	date,	
user,	timestamp,	source	addresses,	destination	addresses,	and	other	useful	elements.	

	

29	|	P a g e 	
	

3.1.5 Ensure the filename pattern for log files is set correctly
(Automated)

Profile	Applicability:	

•		Level	1	-	PostgreSQL	

•		Level	1	-	PostgreSQL	on	Linux	

Description:	

The	log_filename	setting	specifies	the	filename	pattern	for	log	files.	The	value	for	
log_filename	should	match	your	organization's	logging	policy.	

The	value	is	treated	as	a	strftime	pattern,	so	%-escapes	can	be	used	to	specify	time-
varying	filenames.	The	supported	%-escapes	are	similar	to	those	listed	in	the	Open	Group's	
strftime	specification.	If	you	specify	a	filename	without	escapes,	you	should	plan	to	use	a	
log	rotation	utility	to	avoid	eventually	filling	the	partition	that	contains	log_directory.	If	
there	are	any	time-zone-dependent	%-escapes,	the	computation	is	done	in	the	zone	
specified	by	log_timezone.	Also,	the	system's	strftime	is	not	used	directly,	so	platform-
specific	(nonstandard)	extensions	do	not	work.	

If	CSV-format	output	is	enabled	in	log_destination,	.csv	will	be	appended	to	the	log	
filename.	(If	log_filename	ends	in	.log,	the	suffix	is	replaced	instead.)	

Rationale:	

If	log_filename	is	not	set,	then	the	value	of	log_directory	is	appended	to	an	empty	string	
and	PostgreSQL	will	fail	to	start	as	it	will	try	to	write	to	a	directory	instead	of	a	file.	

Audit:	

Execute	the	following	SQL	statement	to	confirm	that	the	desired	pattern	is	set:	

postgres=# show log_filename;
 log_filename

 postgresql-%a.log
(1 row)

Note:	This	example	shows	the	use	of	the	strftime	%a	escape.	This	creates	seven	logfiles,	
one	for	each	day	of	the	week	(e.g.	postgresql-Mon.log,	postgresql-Tue.log,	et	al)	

	

30	|	P a g e 	
	

Remediation:	

Execute	the	following	SQL	statement(s)	to	remediate	this	setting:	

postgres=# alter system set log_filename='postgresql-%Y%m%d.log';
ALTER SYSTEM
postgres=# select pg_reload_conf();
 pg_reload_conf

 t
(1 row)
postgres=# show log_filename;
 log_filename

 postgresql-%Y%m%d.log
(1 row)

Note:	In	this	example,	a	new	logfile	will	be	created	for	each	day	(e.g.	postgresql-
20180901.log)

Default	Value:	

The	default	is	postgresql-%a.log,	which	creates	a	new	logfile	for	each	day	of	the	week	(e.g.	
postgresql-Mon.log,	postgresql-Tue.log).	

References:	

1. https://man7.org/linux/man-pages/man3/strftime.3.html	
2. https://www.postgresql.org/docs/current/runtime-config-logging.html	

CIS	Controls:	

Version	6	

	 6.2	Ensure	Audit	Log	Settings	Support	Appropriate	Log	Entry	Formatting	
	 Validate	audit	log	settings	for	each	hardware	device	and	the	software	installed	on	it,	
ensuring	that	logs	include	a	date,	timestamp,	source	addresses,	destination	addresses,	and	
various	other	useful	elements	of	each	packet	and/or	transaction.	Systems	should	record	
logs	in	a	standardized	format	such	as	syslog	entries	or	those	outlined	by	the	Common	Event	
Expression	initiative.	If	systems	cannot	generate	logs	in	a	standardized	format,	log	
normalization	tools	can	be	deployed	to	convert	logs	into	such	a	format.	

Version	7	

	 6.2	Activate	audit	logging	
	 Ensure	that	local	logging	has	been	enabled	on	all	systems	and	networking	devices.	

	

31	|	P a g e 	
	

	 6.3	Enable	Detailed	Logging	
	 Enable	system	logging	to	include	detailed	information	such	as	an	event	source,	date,	
user,	timestamp,	source	addresses,	destination	addresses,	and	other	useful	elements.	

	

32	|	P a g e 	
	

3.1.6 Ensure the log file permissions are set correctly (Automated)

Profile	Applicability:	

•		Level	1	-	PostgreSQL	

•		Level	1	-	PostgreSQL	on	Linux	

Description:	

The	log_file_mode	setting	determines	the	file	permissions	for	log	files	when	
logging_collector	is	enabled.	The	parameter	value	is	expected	to	be	a	numeric	mode	
specification	in	the	form	accepted	by	the	chmod	and	umask	system	calls.	(To	use	the	
customary	octal	format,	the	number	must	start	with	a	0	(zero).)	

The	permissions	should	be	set	to	allow	only	the	necessary	access	to	authorized	personnel.	
In	most	cases	the	best	setting	is	0600,	so	that	only	the	server	owner	can	read	or	write	the	
log	files.	The	other	commonly	useful	setting	is	0640,	allowing	members	of	the	owner's	
group	to	read	the	files,	although	to	make	use	of	that,	you	will	need	to	alter	the	
log_directory	setting	to	store	the	log	files	outside	the	cluster	data	directory.	

Rationale:	

Log	files	often	contain	sensitive	data.	Allowing	unnecessary	access	to	log	files	may	
inadvertently	expose	sensitive	data	to	unauthorized	personnel.	

Audit:	

Execute	the	following	SQL	statement	to	verify	that	the	setting	is	consistent	with	
organizational	logging	policy:	

postgres=# show log_file_mode;
 log_file_mode

 0600
(1 row)

Remediation:

Execute	the	following	SQL	statement(s)	to	remediate	this	setting	(with	the	example	
assuming	a	desired	value	of	0600):	

postgres=# alter system set log_file_mode = '0600';
ALTER SYSTEM
postgres=# select pg_reload_conf();
 pg_reload_conf

	

33	|	P a g e 	

 t
(1 row)
postgres=# show log_file_mode;
 log_file_mode

 0600
(1 row)

Default	Value:

0600	

References:	

1. https://www.postgresql.org/docs/current/static/runtime-config-logging.html	

CIS	Controls:	

Version	6	

	 14.4	Protect	Information	With	Access	Control	Lists	
	 All	information	stored	on	systems	shall	be	protected	with	file	system,	network	share,	
claims,	application,	or	database	specific	access	control	lists.	These	controls	will	enforce	the	
principle	that	only	authorized	individuals	should	have	access	to	the	information	based	on	
their	need	to	access	the	information	as	a	part	of	their	responsibilities.	

Version	7	

	 14.6	Protect	Information	through	Access	Control	Lists	
	 Protect	all	information	stored	on	systems	with	file	system,	network	share,	claims,	
application,	or	database	specific	access	control	lists.	These	controls	will	enforce	the	
principle	that	only	authorized	individuals	should	have	access	to	the	information	based	on	
their	need	to	access	the	information	as	a	part	of	their	responsibilities.	

	

34	|	P a g e 	
	

3.1.7 Ensure 'log_truncate_on_rotation' is enabled (Automated)

Profile	Applicability:	

•		Level	1	-	PostgreSQL	

•		Level	1	-	PostgreSQL	on	Linux	

Description:	

Enabling	the	log_truncate_on_rotation	setting	when	logging_collector	is	enabled	
causes	PostgreSQL	to	truncate	(overwrite)	existing	log	files	with	the	same	name	during	log	
rotation	instead	of	appending	to	them.	For	example,	using	this	setting	in	combination	with	
a	log_filename	setting	value	like	postgresql-%H.log	would	result	in	generating	24	hourly	
log	files	and	then	cyclically	overwriting	them:	

postgresql-00.log
postgresql-01.log
[...]
postgresql-23.log

Note:	Truncation	will	occur	only	when	a	new	file	is	being	opened	due	to	time-based	
rotation,	not	during	server	startup	or	size-based	rotation	(see	later	in	this	benchmark	for	
size-based	rotation	details).	

Rationale:	

If	this	setting	is	disabled,	pre-existing	log	files	will	be	appended	to	if	log_filename	is	
configured	in	such	a	way	that	static	names	are	generated.	

Enabling	or	disabling	the	truncation	should	only	be	decided	when	also	considering	the	
value	of	log_filename	and	log_rotation_age/log_rotation_size.	Some	examples	to	
illustrate	the	interaction	between	these	settings:	

truncation is moot, as each rotation gets a unique filename (postgresql-
20180605.log)
log_truncate_on_rotation = on
log_filename = 'postgresql-%Y%m%d.log'
log_rotation_age = '1d'
log_rotation_size = 0
truncation every hour, losing log data every hour until the date changes
log_truncate_on_rotation = on
log_filename = 'postgresql-%Y%m%d.log'
log_rotation_age = '1h'
log_rotation_size = 0
no truncation if the date changed before generating 100M of log data,
truncation otherwise
log_truncate_on_rotation = on

	

35	|	P a g e 	
	

log_filename = 'postgresql-%Y%m%d.log'
log_rotation_age = '0'
log_rotation_size = '100M'

Audit:	

Execute	the	following	SQL	statement	to	verify	how	log_truncate_on_rotation	is	set:	

postgres=# show log_truncate_on_rotation;
 log_truncate_on_rotation

 off
(1 row)

If	it	is	not	set	to	'on',	this	is	a	fail.

Remediation:	

Execute	the	following	SQL	statement(s)	to	remediate	this	setting:	

postgres=# alter system set log_truncate_on_rotation = 'on';
ALTER SYSTEM
postgres=# select pg_reload_conf();
 pg_reload_conf

 t
(1 row)
postgres=# show log_truncate_on_rotation;
 log_truncate_on_rotation

 on
(1 row)

Default	Value:

on	

References:	

1. https://www.postgresql.org/docs/current/static/runtime-config-logging.html	

Additional	Information:	

Be	sure	to	consider	your	organization's	logging	retention	policies	and	the	use	of	any	
external	log	consumption	tools	before	deciding	if	truncation	should	be	enabled	or	disabled.	

	 	

	

36	|	P a g e 	
	

CIS	Controls:	

Version	6	

	 6.3	Ensure	Audit	Logging	Systems	Are	Not	Subject	To	Loss	(i.e.	rotation/archive)	
	 Ensure	that	all	systems	that	store	logs	have	adequate	storage	space	for	the	logs	
generated	on	a	regular	basis,	so	that	log	files	will	not	fill	up	between	log	rotation	intervals.	
The	logs	must	be	archived	and	digitally	signed	on	a	periodic	basis.	

Version	7	

	 6.4	Ensure	adequate	storage	for	logs	
	 Ensure	that	all	systems	that	store	logs	have	adequate	storage	space	for	the	logs	
generated.	

	

37	|	P a g e 	
	

3.1.8 Ensure the maximum log file lifetime is set correctly (Automated)

Profile	Applicability:	

•		Level	1	-	PostgreSQL	

•		Level	1	-	PostgreSQL	on	Linux	

Description:	

When	logging_collector	is	enabled,	the	log_rotation_age	parameter	determines	the	
maximum	lifetime	of	an	individual	log	file	(depending	on	the	value	of	log_filename).	After	
this	many	minutes	have	elapsed,	a	new	log	file	will	be	created	via	automatic	log	file	
rotation.	Current	best	practices	advise	log	rotation	at	least	daily,	but	your	organization's	
logging	policy	should	dictate	your	rotation	schedule.	

Rationale:	

Log	rotation	is	a	standard	best	practice	for	log	management.	

Audit:	

Execute	the	following	SQL	statement	to	verify	the	log	rotation	age	is	set	to	an	acceptable	
value:	

postgres=# show log_rotation_age;
 log_rotation_age

 1d

Remediation:

Execute	the	following	SQL	statement(s)	to	remediate	this	setting	(in	this	example,	setting	it	
to	one	hour):	

postgres=# alter system set log_rotation_age='1h';
ALTER SYSTEM
postgres=# select pg_reload_conf();
 pg_reload_conf

 t
(1 row)

Default	Value:

1d	(one	day)	

	

38	|	P a g e 	
	

References:	

1. https://www.postgresql.org/docs/current/static/runtime-config-logging.html	

CIS	Controls:	

Version	6	

	 6.3	Ensure	Audit	Logging	Systems	Are	Not	Subject	To	Loss	(i.e.	rotation/archive)	
	 Ensure	that	all	systems	that	store	logs	have	adequate	storage	space	for	the	logs	
generated	on	a	regular	basis,	so	that	log	files	will	not	fill	up	between	log	rotation	intervals.	
The	logs	must	be	archived	and	digitally	signed	on	a	periodic	basis.	

Version	7	

	 6.4	Ensure	adequate	storage	for	logs	
	 Ensure	that	all	systems	that	store	logs	have	adequate	storage	space	for	the	logs	
generated.	

	

39	|	P a g e 	
	

3.1.9 Ensure the maximum log file size is set correctly (Automated)

Profile	Applicability:	

•		Level	1	-	PostgreSQL	

•		Level	1	-	PostgreSQL	on	Linux	

Description:	

The	log_rotation_size	setting	determines	the	maximum	size	of	an	individual	log	file.	
Once	the	maximum	size	is	reached,	automatic	log	file	rotation	will	occur.	

Rationale:	

If	this	is	set	to	zero,	size-triggered	creation	of	new	log	files	is	disabled.	This	will	prevent	
automatic	log	file	rotation	when	files	become	too	large,	which	could	put	log	data	at	
increased	risk	of	loss	(unless	age-based	rotation	is	configured).	

Audit:	

Execute	the	following	SQL	statement	to	verify	that	log_rotation_size	is	set	in	compliance	
with	the	organization's	logging	policy:	

postgres=# show log_rotation_size;
 log_rotation_size

 1GB
(1 row)

Remediation:

Execute	the	following	SQL	statement(s)	to	remediate	this	setting	(in	this	example,	setting	it	
to	1GB):	

postgres=# alter system set log_rotation_size = '1GB';
ALTER SYSTEM
postgres=# select pg_reload_conf();
 pg_reload_conf

 t
(1 row)

Default	Value:

0	 	

	

40	|	P a g e 	
	

References:	

1. https://www.postgresql.org/docs/current/static/runtime-config-logging.html	

CIS	Controls:	

Version	6	

	 6.3	Ensure	Audit	Logging	Systems	Are	Not	Subject	To	Loss	(i.e.	rotation/archive)	
	 Ensure	that	all	systems	that	store	logs	have	adequate	storage	space	for	the	logs	
generated	on	a	regular	basis,	so	that	log	files	will	not	fill	up	between	log	rotation	intervals.	
The	logs	must	be	archived	and	digitally	signed	on	a	periodic	basis.	

Version	7	

	 6.4	Ensure	adequate	storage	for	logs	
	 Ensure	that	all	systems	that	store	logs	have	adequate	storage	space	for	the	logs	
generated.	

	

41	|	P a g e 	
	

3.1.10 Ensure the correct syslog facility is selected (Manual)

Profile	Applicability:	

•		Level	1	-	PostgreSQL	

•		Level	1	-	PostgreSQL	on	Linux	

Description:	

The	syslog_facility	setting	specifies	the	syslog	"facility"	to	be	used	when	logging	to	
syslog	is	enabled.	You	can	choose	from	any	of	the	'local'	facilities:	

• LOCAL0		
• LOCAL1		
• LOCAL2		
• LOCAL3		
• LOCAL4		
• LOCAL5		
• LOCAL6		
• LOCAL7		

Your	organization's	logging	policy	should	dictate	which	facility	to	use	based	on	the	syslog	
daemon	in	use.	

Rationale:	

If	not	set	to	the	appropriate	facility,	the	PostgreSQL	log	messages	may	be	intermingled	with	
other	applications'	log	messages,	incorrectly	routed,	or	potentially	dropped	(depending	on	
your	syslog	configuration).	

Audit:	

Execute	the	following	SQL	statement	and	verify	that	the	correct	facility	is	selected:	

postgres=# show syslog_facility;
 syslog_facility

 local0
(1 row)

Remediation:

Execute	the	following	SQL	statement(s)	to	remediate	this	setting	(in	this	example,	setting	it	
to	the	LOCAL1	facility):	

	

42	|	P a g e 	
	

postgres=# alter system set syslog_facility = 'LOCAL1';
ALTER SYSTEM
postgres=# select pg_reload_conf();
 pg_reload_conf

 t
(1 row)

Default	Value:

LOCAL0	

References:	

1. https://tools.ietf.org/html/rfc3164#section-4.1.1	
2. https://www.postgresql.org/docs/current/static/runtime-config-logging.html	

CIS	Controls:	

Version	6	

	 6	Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	
	 Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	

Version	7	

	 6.2	Activate	audit	logging	
	 Ensure	that	local	logging	has	been	enabled	on	all	systems	and	networking	devices.	

	

43	|	P a g e 	
	

3.1.11 Ensure the program name for PostgreSQL syslog messages is
correct (Automated)

Profile	Applicability:	

•		Level	1	-	PostgreSQL	

•		Level	1	-	PostgreSQL	on	Linux	

Description:	

The	syslog_ident	setting	specifies	the	program	name	used	to	identify	PostgreSQL	
messages	in	syslog	logs.	An	example	of	a	possible	program	name	is	postgres.	

Rationale:	

If	this	is	not	set	correctly,	it	may	be	difficult	or	impossible	to	distinguish	PostgreSQL	
messages	from	other	messages	in	syslog	logs.	

Audit:	

Execute	the	following	SQL	statement	to	verify	the	program	name	is	set	correctly:	

postgres=# show syslog_ident;
 syslog_ident

 postgres
(1 row)

Remediation:

Execute	the	following	SQL	statement(s)	to	remediate	this	setting	(in	this	example,	
assuming	a	program	name	of	proddb):	

postgres=# alter system set syslog_ident = 'proddb';
ALTER SYSTEM
postgres=# select pg_reload_conf();
 pg_reload_conf

 t
(1 row)
postgres=# show syslog_ident;
 syslog_ident

 proddb
(1 row)	

	

44	|	P a g e 	
	

Default	Value:

postgres	

References:	

1. https://tools.ietf.org/html/rfc3164#section-4.1.3	
2. https://www.postgresql.org/docs/current/static/runtime-config-logging.html	

CIS	Controls:	

Version	6	

	 6	Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	
	 Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	

Version	7	

	 6.3	Enable	Detailed	Logging	
	 Enable	system	logging	to	include	detailed	information	such	as	an	event	source,	date,	
user,	timestamp,	source	addresses,	destination	addresses,	and	other	useful	elements.	

	

45	|	P a g e 	
	

3.1.12 Ensure the correct messages are written to the server log
(Automated)

Profile	Applicability:	

•		Level	1	-	PostgreSQL	

•		Level	1	-	PostgreSQL	on	Linux	

Description:	

The	log_min_messages	setting	specifies	the	message	levels	that	are	written	to	the	server	
log.	Each	level	includes	all	the	levels	that	follow	it.	The	lower	the	level	(vertically,	below),	
the	fewer	messages	are	sent.	

Valid	values	are:	

• DEBUG5	<--	exceedingly	chatty	
• DEBUG4		
• DEBUG3		
• DEBUG2		
• DEBUG1		
• INFO		
• NOTICE		
• WARNING		
• ERROR		
• LOG		
• FATAL		
• PANIC	<--	practically	mute	

WARNING	is	considered	the	best	practice	unless	indicated	otherwise	by	your	organization's	
logging	policy.	

Rationale:	

If	this	is	not	set	to	the	correct	value,	too	many	messages	or	too	few	messages	may	be	
written	to	the	server	log.	

Audit:	

Execute	the	following	SQL	statement	to	confirm	the	setting	is	correct:	

postgres=# show log_min_messages;
 log_min_messages

46	|	P a g e 	
	

 warning
(1 row)

If	logging	is	not	configured	to	at	least	warning,	this	is	a	fail.

Remediation:	

Execute	the	following	SQL	statement(s)	as	superuser	to	remediate	this	setting	(in	this	
example,	to	set	it	to	warning):	

postgres=# alter system set log_min_messages = 'warning';
ALTER SYSTEM
postgres=# select pg_reload_conf();
 pg_reload_conf

 t
(1 row)

Default	Value:

WARNING	

References:	

1. https://www.postgresql.org/docs/current/static/runtime-config-logging.html	

CIS	Controls:	

Version	6	

	 6	Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	
	 Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	

Version	7	

	 6.4	Ensure	adequate	storage	for	logs	
	 Ensure	that	all	systems	that	store	logs	have	adequate	storage	space	for	the	logs	
generated.	

	

47	|	P a g e 	
	

3.1.13 Ensure the correct SQL statements generating errors are
recorded (Automated)

Profile	Applicability:	

•		Level	1	-	PostgreSQL	

•		Level	1	-	PostgreSQL	on	Linux	

Description:	

The	log_min_error_statement	setting	causes	all	SQL	statements	generating	errors	at	or	
above	the	specified	severity	level	to	be	recorded	in	the	server	log.	Each	level	includes	all	
the	levels	that	follow	it.	The	lower	the	level	(vertically,	below),	the	fewer	messages	are	
recorded.	Valid	values	are:	

• DEBUG5	<--	exceedingly	chatty	
• DEBUG4		
• DEBUG3		
• DEBUG2		
• DEBUG1		
• INFO		
• NOTICE		
• WARNING		
• ERROR		
• LOG		
• FATAL		
• PANIC	<--	practically	mute	

ERROR	is	considered	the	best	practice	setting.	Changes	should	only	be	made	in	accordance	
with	your	organization's	logging	policy.	

Note:	To	effectively	turn	off	logging	of	failing	statements,	set	this	parameter	to	PANIC.	

Rationale:	

If	this	is	not	set	to	the	correct	value,	too	many	erring	SQL	statements	or	too	few	erring	SQL	
statements	may	be	written	to	the	server	log.	

Audit:	

Execute	the	following	SQL	statement	to	verify	the	setting	is	correct:	

postgres=# show log_min_error_statement;
 log_min_error_statement

	

48	|	P a g e 	

 error
(1 row)

If	not	configured	to	at	least	error,	this	is	a	fail.

Remediation:	

Execute	the	following	SQL	statement(s)	as	superuser	to	remediate	this	setting	(in	the	
example,	to	error):	

postgres=# alter system set log_min_error_statement = 'error';
ALTER SYSTEM
postgres=# select pg_reload_conf();
 pg_reload_conf

 t
(1 row)

Default	Value:

ERROR	

References:	

1. https://www.postgresql.org/docs/current/static/runtime-config-logging.html	

CIS	Controls:	

Version	6	

	 6	Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	
	 Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	

Version	7	

	 6.4	Ensure	adequate	storage	for	logs	
	 Ensure	that	all	systems	that	store	logs	have	adequate	storage	space	for	the	logs	
generated.	

	

49	|	P a g e 	
	

3.1.14 Ensure 'debug_print_parse' is disabled (Automated)

Profile	Applicability:	

•		Level	1	-	PostgreSQL	

•		Level	1	-	PostgreSQL	on	Linux	

Description:	

The	debug_print_parse	setting	enables	printing	the	resulting	parse	tree	for	each	executed	
query.	These	messages	are	emitted	at	the	LOG	message	level.	Unless	directed	otherwise	by	
your	organization's	logging	policy,	it	is	recommended	this	setting	be	disabled	by	setting	it	
to	off.	

Rationale:	

Enabling	any	of	the	DEBUG	printing	variables	may	cause	the	logging	of	sensitive	information	
that	would	otherwise	be	omitted	based	on	the	configuration	of	the	other	logging	settings.	

Audit:	

Execute	the	following	SQL	statement	to	confirm	the	setting	is	correct:	

postgres=# show debug_print_parse;
 debug_print_parse

 off
(1 row)

If	not	configured	to	off,	this	is	a	fail.

Remediation:	

Execute	the	following	SQL	statement(s)	to	remediate	this	setting:	

postgres=# alter system set debug_print_parse='off';
ALTER SYSTEM
postgres=# select pg_reload_conf();
 pg_reload_conf

 t
(1 row)

Default	Value:

off	

	

50	|	P a g e 	
	

References:	

1. https://www.postgresql.org/docs/current/static/runtime-config-logging.html	

CIS	Controls:	

Version	6	

	 6	Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	
	 Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	

Version	7	

	 5.1	Establish	Secure	Configurations	
	 Maintain	documented,	standard	security	configuration	standards	for	all	authorized	
operating	systems	and	software.	

	

51	|	P a g e 	
	

3.1.15 Ensure 'debug_print_rewritten' is disabled (Automated)

Profile	Applicability:	

•		Level	1	-	PostgreSQL	

•		Level	1	-	PostgreSQL	on	Linux	

Description:	

The	debug_print_rewritten	setting	enables	printing	the	query	rewriter	output	for	each	
executed	query.	These	messages	are	emitted	at	the	LOG	message	level.	Unless	directed	
otherwise	by	your	organization's	logging	policy,	it	is	recommended	this	setting	be	disabled	
by	setting	it	to	off.	

Rationale:	

Enabling	any	of	the	DEBUG	printing	variables	may	cause	the	logging	of	sensitive	information	
that	would	otherwise	be	omitted	based	on	the	configuration	of	the	other	logging	settings.	

Audit:	

Execute	the	following	SQL	statement	to	confirm	the	setting	is	disabled:	

postgres=# show debug_print_rewritten;
 debug_print_rewritten

 off
(1 row)

If	not	configured	to	off,	this	is	a	fail.

Remediation:	

Execute	the	following	SQL	statement(s)	to	disable	this	setting:	

postgres=# alter system set debug_print_rewritten = 'off';
ALTER SYSTEM
postgres=# select pg_reload_conf();
 pg_reload_conf

 t
(1 row)

Default	Value:

off	

	

52	|	P a g e 	
	

References:	

1. https://www.postgresql.org/docs/current/static/runtime-config-logging.html	

CIS	Controls:	

Version	6	

	 6	Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	
	 Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	

Version	7	

	 5.1	Establish	Secure	Configurations	
	 Maintain	documented,	standard	security	configuration	standards	for	all	authorized	
operating	systems	and	software.	

	

53	|	P a g e 	
	

3.1.16 Ensure 'debug_print_plan' is disabled (Automated)

Profile	Applicability:	

•		Level	1	-	PostgreSQL	

•		Level	1	-	PostgreSQL	on	Linux	

Description:	

The	debug_print_plan	setting	enables	printing	the	execution	plan	for	each	executed	query.	
These	messages	are	emitted	at	the	LOG	message	level.	Unless	directed	otherwise	by	your	
organization's	logging	policy,	it	is	recommended	this	setting	be	disabled	by	setting	it	to	off.	

Rationale:	

Enabling	any	of	the	DEBUG	printing	variables	may	cause	the	logging	of	sensitive	information	
that	would	otherwise	be	omitted	based	on	the	configuration	of	the	other	logging	settings.	

Audit:	

Execute	the	following	SQL	statement	to	verify	the	setting	is	disabled:	

postgres=# show debug_print_plan ;
 debug_print_plan

 off
(1 row)

If	not	configured	to	off,	this	is	a	fail.

Remediation:	

Execute	the	following	SQL	statement(s)	to	disable	this	setting:	

postgres=# alter system set debug_print_plan = 'off';
ALTER SYSTEM
postgres=# select pg_reload_conf();
 pg_reload_conf

 t
(1 row)

Default	Value:

off	

	

54	|	P a g e 	
	

References:	

1. https://www.postgresql.org/docs/current/static/runtime-config-logging.html	

CIS	Controls:	

Version	6	

	 6	Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	
	 Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	

Version	7	

	 5.1	Establish	Secure	Configurations	
	 Maintain	documented,	standard	security	configuration	standards	for	all	authorized	
operating	systems	and	software.	

	

55	|	P a g e 	
	

3.1.17 Ensure 'debug_pretty_print' is enabled (Automated)

Profile	Applicability:	

•		Level	1	-	PostgreSQL	

•		Level	1	-	PostgreSQL	on	Linux	

Description:	

Enabling	debug_pretty_print	indents	the	messages	produced	by	debug_print_parse,	
debug_print_rewritten,	or	debug_print_plan	making	them	significantly	easier	to	read.	

Rationale:	

If	this	setting	is	disabled,	the	"compact"	format	is	used	instead,	significantly	reducing	
readability	of	the	DEBUG	statement	log	messages.	

Impact:	

Be	advised	that	the	aforementioned	DEBUG	printing	options	are	disabled,	but	if	your	
organizational	logging	policy	requires	them	to	be	on	then	this	option	comes	into	play.	

Audit:	

Execute	the	following	SQL	statement	to	confirm	the	setting	is	enabled:	

postgres=# show debug_pretty_print ;
 debug_pretty_print

 on
(1 row)

If	not	configured	to	on,	this	is	a	fail.

Remediation:	

Execute	the	following	SQL	statement(s)	to	enable	this	setting:	

postgres=# alter system set debug_pretty_print = 'on';
ALTER SYSTEM
postgres=# select pg_reload_conf();
 pg_reload_conf

 t
(1 row)	

	

56	|	P a g e 	
	

Default	Value:

on	

References:	

1. https://www.postgresql.org/docs/current/static/runtime-config-logging.html	

CIS	Controls:	

Version	6	

	 6	Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	
	 Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	

Version	7	

	 6.3	Enable	Detailed	Logging	
	 Enable	system	logging	to	include	detailed	information	such	as	an	event	source,	date,	
user,	timestamp,	source	addresses,	destination	addresses,	and	other	useful	elements.	

	

57	|	P a g e 	
	

3.1.18 Ensure 'log_connections' is enabled (Automated)

Profile	Applicability:	

•		Level	1	-	PostgreSQL	

•		Level	1	-	PostgreSQL	on	Linux	

Description:	

Enabling	the	log_connections	setting	causes	each	attempted	connection	to	the	server	to	
be	logged,	as	well	as	successful	completion	of	client	authentication.	This	parameter	cannot	
be	changed	after	session	start.	

Rationale:	

PostgreSQL	does	not	maintain	an	internal	record	of	attempted	connections	to	the	database	
for	later	auditing.	It	is	only	by	enabling	the	logging	of	these	attempts	that	one	can	
determine	if	unexpected	attempts	are	being	made.	

Note	that	enabling	this	without	also	enabling	log_disconnections	provides	little	value.	
Generally,	you	would	enable/disable	the	pair	together.	

Audit:	

Execute	the	following	SQL	statement	to	verify	the	setting	is	enabled:	

postgres=# show log_connections;
 log_connections

 on
(1 row)

If	not	configured	to	on,	this	is	a	fail.

Remediation:	

Execute	the	following	SQL	statement(s)	to	enable	this	setting:	

postgres=# alter system set log_connections = 'on';
ALTER SYSTEM
postgres=# select pg_reload_conf();
 pg_reload_conf

 t
(1 row)

	

58	|	P a g e 	
	

Default	Value:

off	

References:	

1. https://www.postgresql.org/docs/current/static/runtime-config-logging.html	

CIS	Controls:	

Version	6	

	 6	Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	
	 Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	

Version	7	

	 6.3	Enable	Detailed	Logging	
	 Enable	system	logging	to	include	detailed	information	such	as	an	event	source,	date,	
user,	timestamp,	source	addresses,	destination	addresses,	and	other	useful	elements.	

	

59	|	P a g e 	
	

3.1.19 Ensure 'log_disconnections' is enabled (Automated)

Profile	Applicability:	

•		Level	1	-	PostgreSQL	

•		Level	1	-	PostgreSQL	on	Linux	

Description:	

Enabling	the	log_disconnections	setting	logs	the	end	of	each	session,	including	session	
duration.	This	parameter	cannot	be	changed	after	session	start.	

Rationale:	

PostgreSQL	does	not	maintain	the	beginning	or	ending	of	a	connection	internally	for	later	
review.	It	is	only	by	enabling	the	logging	of	these	that	one	can	examine	connections	for	
failed	attempts,	'over	long'	duration,	or	other	anomalies.	

Note	that	enabling	this	without	also	enabling	log_connections	provides	little	value.	
Generally,	you	would	enable/disable	the	pair	together.	

Audit:	

Execute	the	following	SQL	statement	to	verify	the	setting	is	enabled:	

postgres=# show log_disconnections;
 log_disconnections

 on
(1 row)

If	not	configured	to	on,	this	is	a	fail.

Remediation:	

Execute	the	following	SQL	statement(s)	to	enable	this	setting:	

postgres=# alter system set log_disconnections = 'on';
ALTER SYSTEM
postgres=# select pg_reload_conf();
 pg_reload_conf

 t
(1 row)	

	

60	|	P a g e 	
	

Default	Value:

off	

References:	

1. https://www.postgresql.org/docs/current/static/runtime-config-logging.html	

CIS	Controls:	

Version	6	

	 6	Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	
	 Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	

Version	7	

	 6.3	Enable	Detailed	Logging	
	 Enable	system	logging	to	include	detailed	information	such	as	an	event	source,	date,	
user,	timestamp,	source	addresses,	destination	addresses,	and	other	useful	elements.	

	

61	|	P a g e 	
	

3.1.20 Ensure 'log_error_verbosity' is set correctly (Automated)

Profile	Applicability:	

•		Level	1	-	PostgreSQL	

•		Level	1	-	PostgreSQL	on	Linux	

Description:	

The	log_error_verbosity	setting	specifies	the	verbosity	(amount	of	detail)	of	logged	
messages.	Valid	values	are:	

• TERSE		
• DEFAULT		
• VERBOSE		

with	each	containing	the	fields	of	the	level	above	it	as	well	as	additional	fields.	

TERSE	excludes	the	logging	of	DETAIL,	HINT,	QUERY,	and	CONTEXT	error	information.	

VERBOSE	output	includes	the	SQLSTATE,	error	code,	and	the	source	code	file	name,	function	
name,	and	line	number	that	generated	the	error.	

The	appropriate	value	should	be	set	based	on	your	organization's	logging	policy.	

Rationale:	

If	this	is	not	set	to	the	correct	value,	too	many	details	or	too	few	details	may	be	logged.	

Audit:	

Execute	the	following	SQL	statement	to	verify	the	setting	is	correct:	

postgres=# show log_error_verbosity ;
 log_error_verbosity

 default
(1 row)

If	not	configured	to	verbose,	this	is	a	fail.

Remediation:	

Execute	the	following	SQL	statement(s)	as	superuser	to	remediate	this	setting	(in	this	
example,	to	verbose):	

	

62	|	P a g e 	
	

postgres=# alter system set log_error_verbosity = 'verbose';
ALTER SYSTEM
postgres=# select pg_reload_conf();
 pg_reload_conf

 t
(1 row)

Default	Value:

DEFAULT	

References:	

1. https://www.postgresql.org/docs/current/static/runtime-config-logging.html	

CIS	Controls:	

Version	6	

	 6	Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	
	 Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	

Version	7	

	 6.3	Enable	Detailed	Logging	
	 Enable	system	logging	to	include	detailed	information	such	as	an	event	source,	date,	
user,	timestamp,	source	addresses,	destination	addresses,	and	other	useful	elements.	

	

63	|	P a g e 	
	

3.1.21 Ensure 'log_hostname' is set correctly (Automated)

Profile	Applicability:	

•		Level	1	-	PostgreSQL	

•		Level	1	-	PostgreSQL	on	Linux	

Description:	

Enabling	the	log_hostname	setting	causes	the	hostname	of	the	connecting	host	to	be	logged	
in	addition	to	the	host's	IP	address	for	connection	log	messages.	Disabling	the	setting	
causes	only	the	connecting	host's	IP	address	to	be	logged,	and	not	the	hostname.	Unless	
your	organization's	logging	policy	requires	hostname	logging,	it	is	best	to	disable	this	
setting	so	as	not	to	incur	the	overhead	of	DNS	resolution	for	each	statement	that	is	logged.	

Rationale:	

Depending	on	your	hostname	resolution	setup,	enabling	this	setting	might	impose	a	non-
negligible	performance	penalty.	Additionally,	the	IP	addresses	that	are	logged	can	be	
resolved	to	their	DNS	names	when	reviewing	the	logs	(unless	dynamic	host	names	are	
being	used	as	part	of	your	DHCP	setup).	

Audit:	

Execute	the	following	SQL	statement	to	verify	the	setting	is	correct:	

postgres=# show log_hostname;
 log_hostname

 off
(1 row)

If	not	configured	to	off,	this	is	a	fail.

Remediation:	

Execute	the	following	SQL	statement(s)	to	remediate	this	setting	(in	this	example,	to	off):	

postgres=# alter system set log_hostname='off';
ALTER SYSTEM
postgres=# select pg_reload_conf();
 pg_reload_conf

 t
(1 row)

	

64	|	P a g e 	
	

Default	Value:

off	

References:	

1. https://www.postgresql.org/docs/current/static/runtime-config-logging.html	

CIS	Controls:	

Version	6	

	 6	Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	
	 Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	

Version	7	

	 5.1	Establish	Secure	Configurations	
	 Maintain	documented,	standard	security	configuration	standards	for	all	authorized	
operating	systems	and	software.	

	

65	|	P a g e 	
	

3.1.22 Ensure 'log_line_prefix' is set correctly (Automated)

Profile	Applicability:	

•		Level	1	-	PostgreSQL	

•		Level	1	-	PostgreSQL	on	Linux	

Description:	

The	log_line_prefix	setting	specifies	a	printf-style	string	that	is	prefixed	to	each	log	line.	
If	blank,	no	prefix	is	used.	You	should	configure	this	as	recommended	by	the	pgBadger	
development	team	unless	directed	otherwise	by	your	organization's	logging	policy.	

%	characters	begin	"escape	sequences"	that	are	replaced	with	status	information	as	
outlined	below.	Unrecognized	escapes	are	ignored.	Other	characters	are	copied	straight	to	
the	log	line.	Some	escapes	are	only	recognized	by	session	processes	and	will	be	treated	as	
empty	by	background	processes	such	as	the	main	server	process.	Status	information	may	
be	aligned	either	left	or	right	by	specifying	a	numeric	literal	after	the	%	and	before	the	
option.	A	negative	value	will	cause	the	status	information	to	be	padded	on	the	right	with	
spaces	to	give	it	a	minimum	width,	whereas	a	positive	value	will	pad	on	the	left.	Padding	
can	be	useful	to	aid	human	readability	in	log	files.	

Any	of	the	following	escape	sequences	can	be	used:	

%a = application name
%u = user name
%d = database name
%r = remote host and port
%h = remote host
%b = backend type
%p = process ID
%t = timestamp without milliseconds
%m = timestamp with milliseconds
%n = timestamp with milliseconds (as a Unix epoch)
%i = command tag
%e = SQL state
%c = session ID
%l = session line number
%s = session start timestamp
%v = virtual transaction ID
%x = transaction ID (0 if none)
%q = stop here in non-session processes
%% = '%'	

	

66	|	P a g e 	
	

Rationale:	

Properly	setting	log_line_prefix	allows	for	adding	additional	information	to	each	log	
entry	(such	as	the	user,	or	the	database).	Said	information	may	then	be	of	use	in	auditing	or	
security	reviews.	

Audit:	

Execute	the	following	SQL	statement	to	verify	the	setting	is	correct:	

postgres=# show log_line_prefix;
 log_line_prefix

 < %m >
(1 row)

If	the	prefix	does	not	at	a	minimum	include	%m [%p]: [%l-1]
db=%d,user=%u,app=%a,client=%h,	this	is	a	fail.

Remediation:	

Execute	the	following	SQL	statement(s)	to	remediate	this	setting:	

postgres=# alter system set log_line_prefix = '%m [%p]: [%l-1]
db=%d,user=%u,app=%a,client=%h';
ALTER SYSTEM
postgres=# select pg_reload_conf();
 pg_reload_conf

 t
(1 row)

Default	Value:

%m [%p]	

References:	

1. https://pgbadger.darold.net/	
2. https://www.postgresql.org/docs/current/static/runtime-config-logging.html	

CIS	Controls:	

Version	6	

	 6	Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	
	 Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	

Version	7	

	

67	|	P a g e 	
	

	 6.3	Enable	Detailed	Logging	
	 Enable	system	logging	to	include	detailed	information	such	as	an	event	source,	date,	
user,	timestamp,	source	addresses,	destination	addresses,	and	other	useful	elements.	

	

68	|	P a g e 	
	

3.1.23 Ensure 'log_statement' is set correctly (Automated)

Profile	Applicability:	

•		Level	1	-	PostgreSQL	

•		Level	1	-	PostgreSQL	on	Linux	

Description:	

The	log_statement	setting	specifies	the	types	of	SQL	statements	that	are	logged.	Valid	
values	are:	

• none	(off)	
• ddl		
• mod		
• all	(all	statements)	

It	is	recommended	this	be	set	to	ddl	unless	otherwise	directed	by	your	organization's	
logging	policy.	

ddl	logs	all	data	definition	statements:	

• CREATE		
• ALTER		
• DROP		

mod	logs	all	ddl	statements,	plus	data-modifying	statements:	

• INSERT		
• UPDATE		
• DELETE		
• TRUNCATE		
• COPY FROM		

(PREPARE,	EXECUTE,	and	EXPLAIN ANALYZE	statements	are	also	logged	if	their	contained	
command	is	of	an	appropriate	type.)	

For	clients	using	extended	query	protocol,	logging	occurs	when	an	Execute	message	is	
received,	and	values	of	the	Bind	parameters	are	included	(with	any	embedded	single-quote	
marks	doubled).	 	

	

69	|	P a g e 	
	

Rationale:	

Setting	log_statement	to	align	with	your	organization's	security	and	logging	policies	
facilitates	later	auditing	and	review	of	database	activities.	

Audit:	

Execute	the	following	SQL	statement	to	verify	the	setting	is	correct:	

postgres=# show log_statement;
 log_statement

 none
(1 row)

If	log_statement	is	set	to	none	then	this	is	a	fail.

Remediation:	

Execute	the	following	SQL	statement(s)	as	superuser	to	remediate	this	setting:	

postgres=# alter system set log_statement='ddl';
ALTER SYSTEM
postgres=# select pg_reload_conf();
 pg_reload_conf

 t
(1 row)

Default	Value:

none	

References:	

1. https://www.postgresql.org/docs/current/static/runtime-config-logging.html	

CIS	Controls:	

Version	6	

	 6	Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	
	 Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	 	

	

70	|	P a g e 	
	

Version	7	

	 6.3	Enable	Detailed	Logging	
	 Enable	system	logging	to	include	detailed	information	such	as	an	event	source,	date,	
user,	timestamp,	source	addresses,	destination	addresses,	and	other	useful	elements.	

	

71	|	P a g e 	
	

3.1.24 Ensure 'log_timezone' is set correctly (Automated)

Profile	Applicability:	

•		Level	1	-	PostgreSQL	

•		Level	1	-	PostgreSQL	on	Linux	

Description:	

The	log_timezone	setting	specifies	the	time	zone	to	use	in	timestamps	within	log	messages.	
This	value	is	cluster-wide,	so	that	all	sessions	will	report	timestamps	consistently.	Unless	
directed	otherwise	by	your	organization's	logging	policy,	set	this	to	either	GMT	or	UTC.	

Rationale:	

Log	entry	timestamps	should	be	configured	for	an	appropriate	time	zone	as	defined	by	
your	organization's	logging	policy	to	ensure	a	lack	of	confusion	around	when	a	logged	
event	occurred.	

Note	that	this	setting	affects	only	the	timestamps	present	in	the	logs.	It	does	not	affect	the	
time	zone	in	use	by	the	database	itself	(for	example,	select now()),	nor	does	it	affect	the	
host's	time	zone.	

Audit:	

Execute	the	following	SQL	statement:	

postgres=# show log_timezone ;
 log_timezone

 US/Eastern
(1 row)

If	log_timezone	is	not	set	to	GMT,	UTC,	or	as	defined	by	your	organization's	logging	policy	
this	is	a	fail.

Remediation:	

Execute	the	following	SQL	statement(s)	to	remediate	this	setting:	

postgres=# alter system set log_timezone = 'GMT';
ALTER SYSTEM
postgres=# select pg_reload_conf();
 pg_reload_conf

72	|	P a g e 	
	

 t
(1 row)

Default	Value:

By	default,	the	PGDG	packages	will	set	this	to	match	the	server's	timezone	in	the	Operating	
System.	

References:	

1. https://www.postgresql.org/docs/current/static/runtime-config-logging.html	
2. https://en.wikipedia.org/wiki/Time_zone	

CIS	Controls:	

Version	6	

	 6	Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	
	 Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	

Version	7	

	 6.3	Enable	Detailed	Logging	
	 Enable	system	logging	to	include	detailed	information	such	as	an	event	source,	date,	
user,	timestamp,	source	addresses,	destination	addresses,	and	other	useful	elements.	

	

73	|	P a g e 	
	

3.2 Ensure the PostgreSQL Audit Extension (pgAudit) is enabled
(Automated)

Profile	Applicability:	

•		Level	1	-	PostgreSQL	

•		Level	1	-	PostgreSQL	on	Linux	

Description:	

The	PostgreSQL	Audit	Extension	(pgAudit)	provides	detailed	session	and/or	object	audit	
logging	via	the	standard	PostgreSQL	logging	facility.	The	goal	of	pgAudit	is	to	provide	
PostgreSQL	users	with	the	capability	to	produce	audit	logs	often	required	to	comply	with	
government,	financial,	or	ISO	certifications.	

Rationale:	

Basic	statement	logging	can	be	provided	by	the	standard	logging	facility	with	
log_statement = all.	This	is	acceptable	for	monitoring	and	other	uses	but	does	not	
provide	the	level	of	detail	generally	required	for	an	audit.	It	is	not	enough	to	have	a	list	of	
all	the	operations	performed	against	the	database,	it	must	also	be	possible	to	find	
particular	statements	that	are	of	interest	to	an	auditor.	The	standard	logging	facility	shows	
what	the	user	requested,	while	pgAudit	focuses	on	the	details	of	what	happened	while	the	
database	was	satisfying	the	request.	

When	logging	SELECT	and	DML	statements,	pgAudit	can	be	configured	to	log	a	separate	entry	
for	each	relation	referenced	in	a	statement.	No	parsing	is	required	to	find	all	statements	
that	touch	a	particular	table.	In	fact,	the	goal	is	that	the	statement	text	is	provided	primarily	
for	deep	forensics	and	should	not	be	required	for	an	audit.	

Impact:	

Depending	on	settings,	it	is	possible	for	pgAudit	to	generate	an	enormous	volume	of	logging.	
Be	careful	to	determine	exactly	what	needs	to	be	audit	logged	in	your	environment	to	avoid	
logging	too	much.	

Audit:	

First,	as	the	database	administrator	(shown	here	as	"postgres"),	verify	pgaudit	is	enabled	
by	running	the	following	commands:	

	

74	|	P a g e 	
	

postgres=# show shared_preload_libraries ;
 shared_preload_libraries

pgaudit
(1 row)

If	the	output	does	not	contain	"pgaudit",	this	is	a	fail.	
Next,	verify	that	desired	auditing	components	are	enabled:

postgres=# show pgaudit.log;
ERROR: unrecognized configuration parameter "pgaudit.log"

If	the	output	does	not	contain	the	desired	auditing	components,	this	is	a	fail.	
The	list	below	summarizes	pgAudit.log	components:

• READ:	SELECT	and	COPY	when	the	source	is	a	relation	or	a	query.	
• WRITE:	INSERT,	UPDATE,	DELETE,	TRUNCATE,	and	COPY	when	the	destination	is	a	

relation.	
• FUNCTION:	Function	calls	and	DO	blocks.	
• ROLE:	Statements	related	to	roles	and	privileges:	GRANT,	REVOKE,	CREATE/ALTER/DROP

ROLE.	
• DDL:	All	DDL	that	is	not	included	in	the	ROLE	class.	
• MISC:	Miscellaneous	commands,	e.g.	DISCARD,	FETCH,	CHECKPOINT,	VACUUM.	

Remediation:	

To	install	and	enable	pgAudit,	simply	install	the	appropriate	rpm	from	the	PGDG	repo:	

whoami
root
pgauditlogtofile_96.x86_64 : PostgreSQL Audit Log To File Extension
[root@centos8 ~]# dnf -y install pgaudit15_13
Last metadata expiration check: 0:24:09 ago on Mon 14 Dec 2020 06:59:52 PM
UTC.
Dependencies resolved.
===
 Package Architecture Version Repository Size
===
Installing:
 pgaudit15_13 x86_64 1.5.0-1.rhel8 pgdg13 52 k

Transaction Summary
===
Install 1 Package

Total download size: 52 k
Installed size: 93 k
Downloading Packages:
pgaudit15_13-1.5.0-1.rhel8.x86_64.rpm 54 kB/s | 52 kB 00:00

Total 54 kB/s | 52 kB 00:00

	

75	|	P a g e 	
	

Running transaction check
Transaction check succeeded.
Running transaction test
Transaction test succeeded.
Running transaction
 Preparing : 1/1
 Installing : pgaudit15_13-1.5.0-1.rhel8.x86_64 1/1
 Running scriptlet: pgaudit15_13-1.5.0-1.rhel8.x86_64 1/1
 Verifying : pgaudit15_13-1.5.0-1.rhel8.x86_64 1/1

Installed:
 pgaudit15_13-1.5.0-1.rhel8.x86_64

Complete!

pgAudit	is	now	installed	and	ready	to	be	configured.	Next,	we	need	to	alter	the	
postgresql.conf	configuration	file	to:

• enable	pgAudit	as	an	extension	in	the	shared_preload_libraries	parameter	
• indicate	which	classes	of	statements	we	want	to	log	via	the	pgaudit.log	parameter	

and,	finally,	restart	the	PostgreSQL	service:	

$ vi ${PGDATA}/postgresql.conf

Find	the	shared_preload_libraries	entry,	and	add	'pgaudit'	to	it	(preserving	any	existing	
entries):

shared_preload_libraries = 'pgaudit'

OR

shared_preload_libraries = 'pgaudit,somethingelse'

Now,	add	a	new	pgaudit-specific	entry:

for this example we are logging the ddl and write operations
pgaudit.log='ddl,write'

Restart	the	PostgreSQL	server	for	changes	to	take	affect:

whoami
root
systemctl restart postgresql-13
systemctl status postgresql-13|grep 'ago$'
 Active: active (running) since [date] 10s ago

References:

1. https://www.pgaudit.org/	

	

76	|	P a g e 	
	

Additional	Information:	

pgAudit	versions	relate	to	PostgreSQL	major	versions;	ensure	you	install	the	pgAudit	
package	that	matches	your	PostgreSQL	version.	

CIS	Controls:	

Version	6	

	 6	Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	
	 Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	

Version	7	

	 6.2	Activate	audit	logging	
	 Ensure	that	local	logging	has	been	enabled	on	all	systems	and	networking	devices.	

	

77	|	P a g e 	
	

4 User Access and Authorization

The	capability	to	use	database	resources	at	a	given	level,	or	user	authorization	rules,	allows	
for	user	manipulation	of	the	various	parts	of	the	PostgreSQL	database.	These	
authorizations	must	be	structured	to	block	unauthorized	use	and/or	corruption	of	vital	
data	and	services	by	setting	restrictions	on	user	capabilities.	

4.1 Ensure sudo is configured correctly (Manual)

Profile	Applicability:	

•		Level	1	-	PostgreSQL	on	Linux	

Description:	

It	is	common	to	have	more	than	one	authorized	individual	administering	the	PostgreSQL	
service	at	the	Operating	System	level.	It	is	also	quite	common	to	permit	login	privileges	to	
individuals	on	a	PostgreSQL	host	who	otherwise	are	not	authorized	to	access	the	server's	
data	cluster	and	files.	Administering	the	PostgreSQL	data	cluster,	as	opposed	to	its	data,	is	
to	be	accomplished	via	a	localhost	login	of	a	regular	UNIX	user	account.	Access	to	the	
postgres	superuser	account	is	restricted	in	such	a	manner	as	to	interdict	unauthorized	
access.	sudo	satisfies	the	requirements	by	escalating	ordinary	user	account	privileges	as	
the	PostgreSQL	RDBMS	superuser.	

Rationale:	

Without	sudo,	there	would	not	be	capabilities	to	strictly	control	access	to	the	superuser	
account	and	to	securely	and	authoritatively	audit	its	use.	

Audit:	

Log	in	as	an	Operating	System	user	authorized	to	escalate	privileges	and	test	the	sudo	
invocation	by	executing	the	following:	

$ whoami
user1
$ groups
user1
$ sudo su - postgres
[sudo] password for user1:
user1 is not in the sudoers file. This incident will be reported.

As	shown	above,	user1	has	not	been	added	to	the	/etc/sudoers	file	or	made	a	member	of	
any	group	listed	in	the	/etc/sudoers	file.	Whereas:

	

78	|	P a g e 	
	

$ whoami
user2
$ groups
user2 pg_wheel
$ sudo su - postgres
[sudo] password for user2:
$ whoami
postgres

This	shows	that	the	user2	user	is	configured	properly	for	sudo	access.

Remediation:	

As	superuser	root,	execute	the	following	commands:	

echo '%pg_wheel ALL= /bin/su - postgres' > /etc/sudoers.d/postgres
chmod 600 /etc/sudoers.d/postgres

This	grants	any	Operating	System	user	that	is	a	member	of	the	pg_wheel	group	to	use	sudo
su - postgres	to	become	the	postgres	user.	
Ensure	that	all	Operating	System	user's	that	need	such	access	are	members	of	the	group	as	
detailed	earlier	in	this	benchmark.

References:	

1. https://www.sudo.ws/man/1.8.15/sudo.man.html	
2. https://www.sudo.ws/man/1.8.17/visudo.man.html	

CIS	Controls:	

Version	6	

	 5.8	Administrators	Should	Not	Directly	Log	In	To	A	System	(i.e.	use	RunAs/sudo)	
	 Administrators	should	be	required	to	access	a	system	using	a	fully	logged	and	non-
administrative	account.	Then,	once	logged	on	to	the	machine	without	administrative	
privileges,	the	administrator	should	transition	to	administrative	privileges	using	tools	such	
as	Sudo	on	Linux/UNIX,	RunAs	on	Windows,	and	other	similar	facilities	for	other	types	of	
systems.	

Version	7	

	 4.3	Ensure	the	Use	of	Dedicated	Administrative	Accounts	
	 Ensure	that	all	users	with	administrative	account	access	use	a	dedicated	or	secondary	
account	for	elevated	activities.	This	account	should	only	be	used	for	administrative	
activities	and	not	internet	browsing,	email,	or	similar	activities.	

	

79	|	P a g e 	
	

4.2 Ensure excessive administrative privileges are revoked (Manual)

Profile	Applicability:	

•		Level	1	-	PostgreSQL	

Description:	

With	respect	to	PostgreSQL	administrative	SQL	commands,	only	superusers	should	have	
elevated	privileges.	PostgreSQL	regular,	or	application,	users	should	not	possess	the	ability	
to	create	roles,	create	new	databases,	manage	replication,	or	perform	any	other	action	
deemed	privileged.	Typically,	regular	users	should	only	be	granted	the	minimal	set	of	
privileges	commensurate	with	managing	the	application:	

• DDL	(create table,	create view,	create index,	etc.)	
• DML	(select,	insert,	update,	delete)	

Further,	it	has	become	best	practice	to	create	separate	roles	for	DDL	and	DML.	Given	an	
application	called	'payroll',	one	would	create	the	following	users:	

• payroll_owner		
• payroll_user		

Any	DDL	privileges	would	be	granted	to	the	payroll_owner	account	only,	while	DML	
privileges	would	be	given	to	the	payroll_user	account	only.	This	prevents	accidental	
creation/altering/dropping	of	database	objects	by	application	code	that	run	as	the	
payroll_user	account.	

Rationale:	

By	not	restricting	global	administrative	commands	to	superusers	only,	regular	users	
granted	excessive	privileges	may	execute	administrative	commands	with	unintended	and	
undesirable	results.	

Audit:	

First,	inspect	the	privileges	granted	to	the	database	superuser	(identified	here	as	postgres)	
using	the	display	command	psql -c "\du postgres"	to	establish	a	baseline	for	granted	
administrative	privileges.	Based	on	the	output	below,	the	postgres	superuser	can	create	
roles,	create	databases,	manage	replication,	and	bypass	row	level	security	(RLS):	

$ whoami
postgres
$ psql -c "\du postgres"

	

80	|	P a g e 	
	

 List of roles
Role name | Attributes | Member of
----------+---+-----------
postgres | Superuser, Create role, Create DB, Replication, | {}
 | Bypass RLS |

Now,	let's	inspect	the	same	information	for	a	mock	regular	user	called	appuser	using	the	
display	command	psql -c "\du appuser".	The	output	confirms	that	regular	user	appuser	
has	the	same	elevated	privileges	as	system	administrator	user	postgres.	This	is	a	fail.

$ whoami
postgres
$ psql -c "\du appuser"
 List of roles
Role name | Attributes | Member of
----------+---+-----------
appuser | Superuser, Create role, Create DB, Replication, | {}
 | Bypass RLS |

While	this	example	demonstrated	excessive	administrative	privileges	granted	to	a	single	
user,	a	comprehensive	audit	should	be	conducted	to	inspect	all	database	users	for	excessive	
administrative	privileges.	This	can	be	accomplished	via	either	of	the	commands	below.

$ whoami
postgres
$ psql -c "\du *"
$ psql -c "select * from pg_user order by usename"

NOTE	Using	\du *	will	show	all	the	default	PostgreSQL	roles	(e.g.	pg_monitor)	as	well	as	
any	'normal'	roles.	This	is	expected,	and	should	not	be	cause	for	alarm.

Remediation:	

If	any	regular	or	application	users	have	been	granted	excessive	administrative	rights,	those	
privileges	should	be	removed	immediately	via	the	PostgreSQL	ALTER ROLE	SQL	command.	
Using	the	same	example	above,	the	following	SQL	statements	revoke	all	unnecessary	
elevated	administrative	privileges	from	the	regular	user	appuser:	

$ whoami
postgres
$ psql -c "ALTER ROLE appuser NOSUPERUSER;"
ALTER ROLE
$ psql -c "ALTER ROLE appuser NOCREATEROLE;"
ALTER ROLE
$ psql -c "ALTER ROLE appuser NOCREATEDB;"
ALTER ROLE
$ psql -c "ALTER ROLE appuser NOREPLICATION;"
ALTER ROLE
$ psql -c "ALTER ROLE appuser NOBYPASSRLS;"
ALTER ROLE

	

81	|	P a g e 	
	

$ psql -c "ALTER ROLE appuser NOINHERIT;"
ALTER ROLE

Verify	the	appuser	now	passes	your	check	by	having	no	defined	Attributes:

$ whoami
postgres
$ psql -c "\du appuser"
 List of roles
Role name | Attributes | Member of
----------+------------+-----------
appuser | | {}

References:

1. https://www.postgresql.org/docs/current/static/sql-revoke.html	
2. https://www.postgresql.org/docs/current/static/sql-createrole.html	
3. https://www.postgresql.org/docs/current/static/sql-alterrole.html	

CIS	Controls:	

Version	6	

	 5.1	Minimize	And	Sparingly	Use	Administrative	Privileges	
	 Minimize	administrative	privileges	and	only	use	administrative	accounts	when	they	are	
required.	Implement	focused	auditing	on	the	use	of	administrative	privileged	functions	and	
monitor	for	anomalous	behavior.	

Version	7	

	 5.1	Establish	Secure	Configurations	
	 Maintain	documented,	standard	security	configuration	standards	for	all	authorized	
operating	systems	and	software.	

	

82	|	P a g e 	
	

4.3 Ensure excessive function privileges are revoked (Automated)

Profile	Applicability:	

•		Level	1	-	PostgreSQL	on	Linux	

Description:	

In	certain	situations,	to	provide	required	functionality,	PostgreSQL	needs	to	execute	
internal	logic	(stored	procedures,	functions,	triggers,	etc.)	and/or	external	code	modules	
with	elevated	privileges.	However,	if	the	privileges	required	for	execution	are	at	a	higher	
level	than	the	privileges	assigned	to	organizational	users	invoking	the	functionality	
applications/programs,	those	users	are	indirectly	provided	with	greater	privileges	than	
assigned	by	their	organization.	This	is	known	as	privilege	elevation.	Privilege	elevation	
must	be	utilized	only	where	necessary.	Execute	privileges	for	application	functions	should	
be	restricted	to	authorized	users	only.	

Rationale:	

Ideally,	all	application	source	code	should	be	vetted	to	validate	interactions	between	the	
application	and	the	logic	in	the	database,	but	this	is	usually	not	possible	or	feasible	with	
available	resources	even	if	the	source	code	is	available.	The	DBA	should	attempt	to	obtain	
assurances	from	the	development	organization	that	this	issue	has	been	addressed	and	
should	document	what	has	been	discovered.	The	DBA	should	also	inspect	all	application	
logic	stored	in	the	database	(in	the	form	of	functions,	rules,	and	triggers)	for	excessive	
privileges.	

Audit:	

Functions	in	PostgreSQL	can	be	created	with	the	SECURITY DEFINER	option.	When	
SECURITY DEFINER	functions	are	executed	by	a	user,	said	function	is	run	with	the	privileges	
of	the	user	who	created	it,	not	the	user	who	is	running	it.	
To	list	all	functions	that	have	SECURITY DEFINER,	run	the	following	SQL:	

$ whoami
root
$ sudo su - postgres
$ psql -c "SELECT nspname, proname, proargtypes, prosecdef, rolname,
proconfig FROM pg_proc p JOIN pg_namespace n ON p.pronamespace = n.oid JOIN
pg_authid a ON a.oid = p.proowner WHERE prosecdef OR NOT proconfig IS NULL;"

In	the	query	results,	a	prosecdef	value	of	't'	on	a	row	indicates	that	that	function	uses	
privilege	elevation.	

	

83	|	P a g e 	
	

If	elevation	privileges	are	utilized	which	are	not	required	or	are	expressly	forbidden	by	
organizational	guidance,	this	is	a	fail.

Remediation:	

Where	possible,	revoke	SECURITY DEFINER	on	PostgreSQL	functions.	To	change	a	SECURITY
DEFINER	function	to	SECURITY INVOKER,	run	the	following	SQL:	

$ whoami
root
$ sudo su - postgres
$ psql -c "ALTER FUNCTION [functionname] SECURITY INVOKER;"

If	it	is	not	possible	to	revoke	SECURITY DEFINER,	ensure	the	function	can	be	executed	by	
only	the	accounts	that	absolutely	need	such	functionality:

postgres=# SELECT proname, proacl FROM pg_proc WHERE proname =
'delete_customer';
 proname | proacl
-----------------+--
 delete_customer | {=X/postgres,postgres=X/postgres,appwriter=X/postgres}
(1 row)
postgres=# REVOKE EXECUTE ON FUNCTION delete_customer(integer,boolean) FROM
appreader;
REVOKE
postgres=# SELECT proname, proacl FROM pg_proc WHERE proname =
'delete_customer';
 proname | proacl
-----------------+--
 delete_customer | {=X/postgres,postgres=X/postgres}
(1 row)

Based	on	output	above,	appreader=X/postgres	no	longer	exists	in	the	proacl	column	
results	returned	from	query	and	confirms	appreader	is	no	longer	granted	execute	privilege	
on	the	function.

References:	

1. https://www.postgresql.org/docs/current/static/catalog-pg-proc.html	
2. https://www.postgresql.org/docs/current/static/sql-grant.html	
3. https://www.postgresql.org/docs/current/static/sql-revoke.html	
4. https://www.postgresql.org/docs/current/static/sql-createfunction.html	

CIS	Controls:	

Version	6	

	 5.1	Minimize	And	Sparingly	Use	Administrative	Privileges	
	 Minimize	administrative	privileges	and	only	use	administrative	accounts	when	they	are	

	

84	|	P a g e 	
	

required.	Implement	focused	auditing	on	the	use	of	administrative	privileged	functions	and	
monitor	for	anomalous	behavior.	

Version	7	

	 5.1	Establish	Secure	Configurations	
	 Maintain	documented,	standard	security	configuration	standards	for	all	authorized	
operating	systems	and	software.	

	

85	|	P a g e 	
	

4.4 Ensure excessive DML privileges are revoked (Manual)

Profile	Applicability:	

•		Level	1	-	PostgreSQL	

Description:	

DML	(insert,	update,	delete)	operations	at	the	table	level	should	be	restricted	to	only	
authorized	users.	PostgreSQL	manages	table	level	DML	permissions	via	the	GRANT	
statement.	

Rationale:	

Excessive	DML	grants	can	lead	to	unprivileged	users	changing	or	deleting	information	
without	proper	authorization.	

Audit:	

To	audit	excessive	DML	privileges,	take	an	inventory	of	all	users	defined	in	the	cluster	
using	the	\du+ *	SQL	command,	as	well	as	all	tables	defined	in	the	database	using	the	\dt
.	SQL	command.	Furthermore,	the	intersection	matrix	of	tables	and	user	grants	can	be	
obtained	by	querying	system	catalogs	pg_tables	and	pg_user.	Note	that	in	PostgreSQL,	
users	are	defined	cluster-wide	across	all	databases,	while	schemas	and	tables	are	specific	
to	a	particular	database.	Therefore,	the	commands	below	should	be	executed	for	each	
defined	database	in	the	cluster.	With	this	information,	inspect	database	table	grants	and	
determine	if	any	are	excessive	for	defined	database	users.	

postgres=# -- display all users defined in the cluster
postgres=# \x
Expanded display is on.
postgres=# \du+ *

List of roles
-[RECORD 1]---
Role name | pg_execute_server_program
Attributes | Cannot login
Member of | {}
Description |
-[RECORD 2]---
Role name | pg_monitor
Attributes | Cannot login
Member of | {pg_read_all_settings,pg_read_all_stats,pg_stat_scan_tables}
Description |
-[RECORD 3]---
Role name | pg_read_all_settings
Attributes | Cannot login
Member of | {}

	

86	|	P a g e 	
	

Description |
-[RECORD 4]---
Role name | pg_read_all_stats
Attributes | Cannot login
Member of | {}
Description |
-[RECORD 5]---
Role name | pg_read_server_files
Attributes | Cannot login
Member of | {}
Description |
-[RECORD 6]---
Role name | pg_signal_backend
Attributes | Cannot login
Member of | {}
Description |
-[RECORD 7]---
Role name | pg_stat_scan_tables
Attributes | Cannot login
Member of | {}
Description |
-[RECORD 8]---
Role name | pg_write_server_files
Attributes | Cannot login
Member of | {}
Description |
-[RECORD 9]---
Role name | postgres
Attributes | Superuser, Create role, Create DB, Replication, Bypass RLS
Member of | {}
Description |
postgres=# -- display all schema.tables created in current database
postgres=# \x
Expanded display is off.
postgres=# \dt+ *.*
 List of relations
 Schema | Name | Type | Owner |
Persistence | Size | Descrip
tion
--------------------+-------------------------+-------+----------+-----------
--+------------+--------

 information_schema | sql_features | table | postgres | permanent
| 104 kB |
 information_schema | sql_implementation_info | table | postgres | permanent
| 48 kB |
 information_schema | sql_parts | table | postgres | permanent
| 48 kB |
 information_schema | sql_sizing | table | postgres | permanent
| 48 kB |
(snip)

postgres=# -- query all tables and user grants in current database
postgres=# -- the system catalogs 'information_schema' and 'pg_catalog' are
excluded
postgres=# select t.schemaname, t.tablename, u.usename,
 has_table_privilege(u.usename, t.tablename, 'select') as select,

	

87	|	P a g e 	
	

 has_table_privilege(u.usename, t.tablename, 'insert') as insert,
 has_table_privilege(u.usename, t.tablename, 'update') as update,
 has_table_privilege(u.usename, t.tablename, 'delete') as delete
from pg_tables t, pg_user u
where t.schemaname not in ('information_schema','pg_catalog');

 schemaname | tablename | usename | select | insert | update | delete
------------+-----------+---------+--------+--------+--------+--------
(0 rows)

For	the	example	below,	we	illustrate	using	a	single	table	customer	and	two	application	
users	appwriter	and	appreader.	The	intention	is	for	appwriter	to	have	full	select,	insert,	
update,	and	delete	rights	and	for	appreader	to	only	have	select	rights.	We	can	query	these	
privileges	with	the	example	below	using	the	has_table_privilege	function	and	filtering	
for	just	the	table	and	roles	in	question.

postgres=# select t.tablename, u.usename,
 has_table_privilege(u.usename, t.tablename, 'select') as select,
 has_table_privilege(u.usename, t.tablename, 'insert') as insert,
 has_table_privilege(u.usename, t.tablename, 'update') as update,
 has_table_privilege(u.usename, t.tablename, 'delete') as delete
from pg_tables t, pg_user u
where t.tablename = 'customer'
and u.usename in ('appwriter','appreader');

tablename | usename | select | insert | update | delete
----------+-----------+--------+--------+--------+--------
customer | appwriter | t | t | t | t
customer | appreader | t | t | t | t
(2 rows)

As	depicted,	both	users	have	full	privileges	for	the	customer	table.	This	is	a	fail.	
When	inspecting	database-wide	results	for	all	users	and	all	table	grants,	employ	a	
comprehensive	approach.	Collaboration	with	application	developers	is	paramount	to	
collectively	determine	only	those	database	users	that	require	specific	DML	privileges	and	
on	which	tables.

Remediation:	

If	a	given	database	user	has	been	granted	excessive	DML	privileges	for	a	given	database	
table,	those	privileges	should	be	revoked	immediately	using	the	REVOKE	SQL	command.	
Continuing	with	the	example	above,	remove	unauthorized	grants	for	appreader	user	using	
the	REVOKE	statement	and	verify	the	Boolean	values	are	now	false.	

postgres=# REVOKE INSERT, UPDATE, DELETE ON TABLE customer FROM appreader;
REVOKE

postgres=# select t.tablename, u.usename,
 has_table_privilege(u.usename, t.tablename, 'select') as select,

	

88	|	P a g e 	
	

 has_table_privilege(u.usename, t.tablename, 'insert') as insert,
 has_table_privilege(u.usename, t.tablename, 'update') as update,
 has_table_privilege(u.usename, t.tablename, 'delete') as delete
from pg_tables t, pg_user u
where t.tablename = 'customer'
and u.usename in ('appwriter','appreader');

tablename | usename | select | insert | update | delete
----------+-----------+--------+--------+--------+--------
customer | appwriter | t | t | t | t
customer | appreader | t | f | f | f
(2 rows)

With	the	publication	of	CVE-2018-1058,	it	is	also	recommended	that	all	privileges	be	
revoked	from	the	public	schema	for	all	users	on	all	databases:

postgres=# REVOKE CREATE ON SCHEMA public FROM PUBLIC;
REVOKE

Default	Value:

The	table	owner/creator	has	full	privileges;	all	other	users	must	be	explicitly	granted	
access.	

References:	

1. https://www.postgresql.org/docs/current/static/sql-grant.html	
2. https://www.postgresql.org/docs/current/static/sql-revoke.html	
3. https://www.postgresql.org/docs/current/static/functions-info.html#functions-

info-access-table	
4. https://wiki.postgresql.org/wiki/A_Guide_to_CVE-2018-

1058:_Protect_Your_Search_Path	
5. https://nvd.nist.gov/vuln/detail/CVE-2018-1058	

CIS	Controls:	

Version	6	

	 5.1	Minimize	And	Sparingly	Use	Administrative	Privileges	
	 Minimize	administrative	privileges	and	only	use	administrative	accounts	when	they	are	
required.	Implement	focused	auditing	on	the	use	of	administrative	privileged	functions	and	
monitor	for	anomalous	behavior.	

Version	7	

	 5.1	Establish	Secure	Configurations	
	 Maintain	documented,	standard	security	configuration	standards	for	all	authorized	
operating	systems	and	software.	

	

89	|	P a g e 	
	

4.5 Use pg_permission extension to audit object permissions
(Automated)

Profile	Applicability:	

•		Level	1	-	PostgreSQL	

Description:	

Using	a	PostgreSQL	extension	called	pg_permissions	it	is	possible	to	declare	which	DB	
users	should	have	which	permissions	on	a	given	object	and	generate	a	report	showing	
compliance/deviation.	

Rationale:	

Auditing	permissions	in	a	PostgreSQL	database	can	be	intimidating	given	the	default	
manner	in	which	permissions	are	presented.	The	pg_permissions	extension	greatly	
simplifies	this	presentation	and	allows	the	user	to	declare	what	permissions	should	exist	
and	then	report	on	differences	from	that	ideal.	

Audit:	

See	if	the	pg_permissions	extension	is	available	for	use:	

postgres=# select * from pg_available_extensions where name =
'pg_permissions';
 name | default_version | installed_version | comment
------+-----------------+-------------------+---------
(0 rows)

If	the	extension	isn't	found,	this	is	a	fail.

Remediation:	

At	this	time,	pg_permissions	is	not	packaged	by	the	PGDG	packaging	team.	As	such,	
download	the	latest	from	the	extension's	site,	compile	it,	and	then	install	it:	

whoami
root
dnf -y install postgresql13-devel
[snip]
Installed:
 clang-10.0.1-1.module_el8.3.0+467+cb298d5b.x86_64
 clang-devel-10.0.1-1.module_el8.3.0+467+cb298d5b.x86_64
 clang-libs-10.0.1-1.module_el8.3.0+467+cb298d5b.x86_64
 clang-tools-extra-10.0.1-1.module_el8.3.0+467+cb298d5b.x86_64
 cmake-filesystem-3.11.4-7.el8.x86_64

	

90	|	P a g e 	
	

 compiler-rt-10.0.1-1.module_el8.3.0+467+cb298d5b.x86_64
 emacs-filesystem-1:26.1-5.el8.noarch
 gcc-c++-8.3.1-5.1.el8.x86_64
 libicu-devel-60.3-2.el8_1.x86_64
 libomp-10.0.1-1.module_el8.3.0+467+cb298d5b.x86_64
 libomp-devel-10.0.1-1.module_el8.3.0+467+cb298d5b.x86_64
 libstdc++-devel-8.3.1-5.1.el8.x86_64
 llvm-10.0.1-3.module_el8.3.0+467+cb298d5b.x86_64
 llvm-devel-10.0.1-3.module_el8.3.0+467+cb298d5b.x86_64
 llvm-libs-10.0.1-3.module_el8.3.0+467+cb298d5b.x86_64
 postgresql13-devel-13.1-1PGDG.rhel8.x86_64

Complete!
curl -L -o pg_permission_1.1.tgz https://github.com/cybertec-
postgresql/pg_permission/archive/REL_1_1.tar.gz
tar xf pg_permission_1.1.tgz
cd pg_permission-REL_1_1/
which pg_config
/usr/bin/which: no pg_config in (various paths here)
export PATH=/usr/pgsql-13/bin:$PATH
which pg_config
/usr/pgsql-13/bin/pg_config
make install
/usr/bin/mkdir -p '/usr/pgsql-13/share/extension'
/usr/bin/mkdir -p '/usr/pgsql-13/share/extension'
/usr/bin/mkdir -p '/usr/pgsql-13/doc/extension'
/usr/bin/install -c -m 644 .//pg_permissions.control '/usr/pgsql-
13/share/extension/'
/usr/bin/install -c -m 644 .//pg_permissions--*.sql '/usr/pgsql-
13/share/extension/'
/usr/bin/install -c -m 644 .//README.pg_permissions '/usr/pgsql-
13/doc/extension/'
su - postgres
bash-4.2$ whoami
postgres
bash-4.2$ psql -c "create extension pg_permissions;"
CREATE EXTENSION

Now	you	need	to	add	entries	to	permission_target	that	correspond	to	your	desired	
permissions.	
Let's	assume	we	have	a	schema	appschema,	and	appuser	should	have	SELECT,	UPDATE,	
DELETE,	and	INSERT	permissions	on	all	tables	and	views	in	that	schema:

postgres=# INSERT INTO public.permission_target
postgres-# (id, role_name, permissions,
postgres(# object_type, schema_name)
postgres-# VALUES
postgres-# (1, 'appuser', '{SELECT,INSERT,UPDATE,DELETE}',
postgres(# 'TABLE', 'appschema');
INSERT 0 1

postgres=# INSERT INTO public.permission_target
postgres-# (id, role_name, permissions,
postgres(# object_type, schema_name)
postgres-# VALUES

	

91	|	P a g e 	
	

postgres-# (2, 'appuser', '{SELECT,INSERT,UPDATE,DELETE}',
postgres(# 'VIEW', 'appschema');
INSERT 0 1

Of	course,	the	user	will	need	the	USAGE	privilege	on	the	schema:

postgres=# INSERT INTO public.permission_target
postgres-# (id, role_name, permissions,
postgres(# object_type, schema_name)
postgres-# VALUES
postgres-# (3, 'appuser', '{USAGE}',
postgres(# 'SCHEMA', 'appschema');
INSERT 0 1

The	user	also	needs	USAGE	privileges	on	the	appseq	sequence	in	that	schema:

postgres=# INSERT INTO public.permission_target
postgres-# (id, role_name, permissions,
postgres(# object_type, schema_name, object_name)
postgres-# VALUES
postgres-# (4, 'appuser', '{USAGE}',
postgres(# 'SEQUENCE', 'appschema', 'appseq');
INSERT 0 1

Now	we	can	review	which	permissions	are	missing	and	which	additional	permissions	are	
granted:

postgres=# SELECT * FROM public.permission_diffs();

 missing | role_name | object_type | schema_name | object_name | column_name
| permission
---------+-----------+-------------+-------------+-------------+-------------
+------------
 f | laurenz | VIEW | appschema | appview |
| SELECT
 t | appuser | TABLE | appschema | apptable |
| DELETE
(2 rows)

That	means	that	appuser	is	missing	(missing	is	TRUE)	the	DELETE	privilege	on	
appschema.apptable	which	should	be	GRANTed,	while	user	laurenz	has	the	additional	
SELECT	privilege	on	appschema.appview	(missing	is	FALSE).	
To	review	the	actual	permissions	on	an	object,	we	can	use	the	_permissions	views:

postgres=# SELECT * FROM schema_permissions
postgres-# WHERE role_name = 'appuser' AND schema_name = 'appschema' AND
granted IS TRUE;

 object_type | role_name | schema_name | object_name | column_name |
permissions | granted
-------------+-----------+-------------+-------------+-------------+---------
----+---------

	

92	|	P a g e 	
	

 SCHEMA | appuser | appschema | | | USAGE
| t
 (1 row)

For	more	details	and	examples,	visit	the	online	documentation.

References:	

1. https://github.com/cybertec-postgresql/pg_permission	

CIS	Controls:	

Version	7	

	 5.1	Establish	Secure	Configurations	
	 Maintain	documented,	standard	security	configuration	standards	for	all	authorized	
operating	systems	and	software.	

	

93	|	P a g e 	
	

4.6 Ensure Row Level Security (RLS) is configured correctly (Manual)

Profile	Applicability:	

•		Level	1	-	PostgreSQL	

Description:	

In	addition	to	the	SQL-standard	privilege	system	available	through	GRANT,	tables	can	have	
row	security	policies	that	restrict,	on	a	per-user	basis,	which	individual	rows	can	be	
returned	by	normal	queries	or	inserted,	updated,	or	deleted	by	data	modification	
commands.	This	feature	is	also	known	as	Row	Level	Security	(RLS).	

By	default,	tables	do	not	have	any	policies,	so	if	a	user	has	access	privileges	to	a	table	
according	to	the	SQL	privilege	system,	all	rows	within	it	are	equally	available	for	querying	
or	updating.	Row	security	policies	can	be	specific	to	commands,	to	roles,	or	to	both.	A	
policy	can	be	specified	to	apply	to	ALL	commands,	or	to	any	combination	of	SELECT,	INSERT,	
UPDATE,	or	DELETE.	Multiple	roles	can	be	assigned	to	a	given	policy,	and	normal	role	
membership	and	inheritance	rules	apply.	

If	you	use	RLS	and	apply	restrictive	policies	to	certain	users,	it	is	important	that	the	Bypass
RLS	privilege	not	be	granted	to	any	unauthorized	users.	This	privilege	overrides	RLS-
enabled	tables	and	associated	policies.	Generally,	only	superusers	and	elevated	users	
should	possess	this	privilege.	

Rationale:	

If	RLS	policies	and	privileges	are	not	configured	correctly,	users	could	perform	actions	on	
tables	that	they	are	not	authorized	to	perform,	such	as	inserting,	updating,	or	deleting	
rows.	

Audit:	

The	first	step	for	an	organization	is	to	determine	which,	if	any,	database	tables	require	RLS.	
This	decision	is	a	matter	of	business	processes	and	is	unique	to	each	organization.	To	
discover	which,	if	any,	database	tables	have	RLS	enabled,	execute	the	following	query.	If	
any	table(s)	should	have	RLS	policies	applied,	but	do	not	appear	in	query	results,	then	this	
is	a	fail.	

postgres=# SELECT oid, relname, relrowsecurity FROM pg_class WHERE
relrowsecurity IS TRUE;

	

94	|	P a g e 	
	

For	the	purpose	of	this	illustration,	we	will	demonstrate	the	standard	example	from	the	
PostgreSQL	documentation	using	the	passwd	table	and	policy	example.	As	of	PostgreSQL	
9.5,	the	catalog	table	pg_class	provides	column	relrowsecurity	to	query	and	determine	
whether	a	relation	has	RLS	enabled.	Based	on	results	below	we	can	see	RLS	is	not	enabled.	
Assuming	this	table	should	be	RLS	enabled	but	is	not,	this	is	a	fail.

postgres=# SELECT oid, relname, relrowsecurity FROM pg_class WHERE relname =
'passwd';
 oid | relname | relrowsecurity
-------+---------+----------------
 24679 | passwd | f
(1 row)

Further	inspection	of	RLS	policies	are	provided	via	the	system	catalog	pg_policy,	which	
records	policy	details	including	table	OID,	policy	name,	applicable	commands,	the	roles	
assigned	a	policy,	and	the	USING	and	WITH CHECK	clauses.	Finally,	RLS	and	associated	
policies	(if	implemented)	may	also	be	viewed	using	the	standard	psql	display	command	
\d+ schema.table	which	lists	RLS	information	as	part	of	the	table	description.	

Should	you	implement	Row	Level	Security	and	apply	restrictive	policies	to	certain	users,	
it's	imperative	that	you	check	each	user's	role	definition	via	the	psql	display	command	\du	
and	ensure	unauthorized	users	have	not	been	granted	Bypass RLS	privilege	as	this	would	
override	any	RLS	enabled	tables	and	associated	policies.	If	unauthorized	users	do	have	
Bypass RLS	granted	then	resolve	this	using	the	ALTER ROLE <user> NOBYPASSRLS;	
command.

Remediation:	

Again,	we	are	using	the	example	from	the	PostgreSQL	documentation	using	the	example	
passwd	table.	We	will	create	three	database	roles	to	illustrate	the	workings	of	RLS:	

postgres=# CREATE ROLE admin;
CREATE ROLE
postgres=# CREATE ROLE bob;
CREATE ROLE
postgres=# CREATE ROLE alice;
CREATE ROLE

Now,	we	will	insert	known	data	into	the	passwd	table:

postgres=# INSERT INTO passwd VALUES
 ('admin','xxx',0,0,'Admin','111-222-3333',null,'/root','/bin/dash');
INSERT 0 1
postgres=# INSERT INTO passwd VALUES
 ('bob','xxx',1,1,'Bob','123-456-7890',null,'/home/bob','/bin/zsh');
INSERT 0 1
postgres=# INSERT INTO passwd VALUES

	

95	|	P a g e 	
	

 ('alice','xxx',2,1,'Alice','098-765-4321',null,'/home/alice','/bin/zsh');
INSERT 0 1

And	we	will	enable	RLS	on	the	table:

postgres=# ALTER TABLE passwd ENABLE ROW LEVEL SECURITY;
ALTER TABLE

Now	that	RLS	is	enabled,	we	need	to	define	one	or	more	policies.	Create	the	administrator	
policy	and	allow	it	access	to	all	rows:

postgres=# CREATE POLICY admin_all ON passwd TO admin USING (true) WITH CHECK
(true);
CREATE POLICY

Create	a	policy	for	normal	users	to	view	all	rows:

postgres=# CREATE POLICY all_view ON passwd FOR SELECT USING (true);
CREATE POLICY

Create	a	policy	for	normal	users	that	allows	them	to	update	only	their	own	rows	and	to	
limit	what	values	can	be	set	for	their	login	shell:

postgres=# CREATE POLICY user_mod ON passwd FOR UPDATE
 USING (current_user = user_name)
 WITH CHECK (
 current_user = user_name AND
 shell IN ('/bin/bash','/bin/sh','/bin/dash','/bin/zsh','/bin/tcsh')
);
CREATE POLICY

Grant	all	the	normal	rights	on	the	table	to	the	admin	user:

postgres=# GRANT SELECT, INSERT, UPDATE, DELETE ON passwd TO admin;
GRANT

Grant	only	select	access	on	non-sensitive	columns	to	everyone:

postgres=# GRANT SELECT
 (user_name, uid, gid, real_name, home_phone, extra_info, home_dir, shell)
 ON passwd TO public;
GRANT

Grant	update	to	only	the	sensitive	columns:

postgres=# GRANT UPDATE
 (pwhash, real_name, home_phone, extra_info, shell)
 ON passwd TO public;
GRANT

	

96	|	P a g e 	
	

Ensure	that	no	one	has	been	granted	Bypass RLS	inadvertently,	by	running	the	psql	
display	command	\du+.	If	unauthorized	users	do	have	Bypass RLS	granted	then	resolve	this	
using	the	ALTER ROLE <user> NOBYPASSRLS;	command.	
You	can	now	verify	that	'admin',	'bob',	and	'alice'	are	properly	restricted	by	querying	the	
passwd	table	as	each	of	these	roles.

References:	

1. https://www.postgresql.org/docs/current/static/ddl-rowsecurity.html	
2. https://www.postgresql.org/docs/current/static/sql-alterrole.html	

CIS	Controls:	

Version	6	

	 14.4	Protect	Information	With	Access	Control	Lists	
	 All	information	stored	on	systems	shall	be	protected	with	file	system,	network	share,	
claims,	application,	or	database	specific	access	control	lists.	These	controls	will	enforce	the	
principle	that	only	authorized	individuals	should	have	access	to	the	information	based	on	
their	need	to	access	the	information	as	a	part	of	their	responsibilities.	

Version	7	

	 14.6	Protect	Information	through	Access	Control	Lists	
	 Protect	all	information	stored	on	systems	with	file	system,	network	share,	claims,	
application,	or	database	specific	access	control	lists.	These	controls	will	enforce	the	
principle	that	only	authorized	individuals	should	have	access	to	the	information	based	on	
their	need	to	access	the	information	as	a	part	of	their	responsibilities.	

	

97	|	P a g e 	
	

4.7 Ensure the set_user extension is installed (Automated)

Profile	Applicability:	

•		Level	1	-	PostgreSQL	

Description:	

PostgreSQL	access	to	the	superuser	database	role	must	be	controlled	and	audited	to	
prevent	unauthorized	access.	

Rationale:	

Even	when	reducing	and	limiting	the	access	to	the	superuser	role	as	described	earlier	in	
this	benchmark,	it	is	still	difficult	to	determine	who	accessed	the	superuser	role	and	what	
actions	were	taken	using	that	role.	As	such,	it	is	ideal	to	prevent	anyone	from	logging	in	as	
the	superuser	and	forcing	them	to	escalate	their	role.	This	model	is	used	at	the	OS	level	by	
the	use	of	sudo	and	should	be	emulated	in	the	database.	The	set_user	extension	allows	for	
this	setup.	

Impact:	

Much	like	the	venerable	sudo	does	for	the	OS,	set_user	manages	superuser	access	for	
PostgreSQL.	Complete	configuration	of	set_user	is	documented	at	the	extension's	website	
and	should	be	reviewed	to	ensure	the	logging	entries	that	your	organization	cares	about	
are	properly	configured.	

Note	that	some	external	tools	assume	they	can	connect	as	the	postgres	user	by	default	and	
this	is	no	longer	true.	You	may	find	some	tools	need	different	options,	reconfigured,	or	even	
abandoned	to	compensate	for	this.	

Audit:	

Check	if	the	extension	is	available	by	querying	the	pg_available_extensions	table:	

postgres=# select * from pg_available_extensions where name = 'set_user';
 name | default_version | installed_version | comment
------+-----------------+-------------------+---------
(0 rows)

If	the	extension	is	not	listed	this	is	a	fail.	

	

98	|	P a g e 	
	

Remediation:	

At	the	time	this	benchmark	is	being	written,	set_user	is	not	available	as	a	package	in	the	
PGDG	repository.	As	such,	we	will	build	it	from	source:	

whoami
root
dnf -y install postgresql13-devel
[snip]
Installed:
 clang-10.0.1-1.module_el8.3.0+467+cb298d5b.x86_64
 clang-devel-10.0.1-1.module_el8.3.0+467+cb298d5b.x86_64
 clang-libs-10.0.1-1.module_el8.3.0+467+cb298d5b.x86_64
 clang-tools-extra-10.0.1-1.module_el8.3.0+467+cb298d5b.x86_64
 cmake-filesystem-3.11.4-7.el8.x86_64
 compiler-rt-10.0.1-1.module_el8.3.0+467+cb298d5b.x86_64
 emacs-filesystem-1:26.1-5.el8.noarch
 gcc-c++-8.3.1-5.1.el8.x86_64
 libicu-devel-60.3-2.el8_1.x86_64
 libomp-10.0.1-1.module_el8.3.0+467+cb298d5b.x86_64
 libomp-devel-10.0.1-1.module_el8.3.0+467+cb298d5b.x86_64
 libstdc++-devel-8.3.1-5.1.el8.x86_64
 llvm-10.0.1-3.module_el8.3.0+467+cb298d5b.x86_64
 llvm-devel-10.0.1-3.module_el8.3.0+467+cb298d5b.x86_64
 llvm-libs-10.0.1-3.module_el8.3.0+467+cb298d5b.x86_64
 postgresql13-devel-13.1-1PGDG.rhel8.x86_64

Complete!

$ curl -L -o REL2_0_0.tar.gz
https://github.com/pgaudit/set_user/archive/REL2_0_0.tar.gz
$ tar xf REL2_0_0.tar.gz
$ cd set_user-REL2_0_0
$ export PATH=/usr/pgsql-13/bin:$PATH
$ make USE_PGXS=1 install
gcc -Wall -Wmissing-prototypes -Wpointer-arith -Wdeclaration-after-statement
-Werror=vla -Wendif-labels -Wmissing-format-attribute -Wimplicit-
fallthrough=3 -Wformat-security -fno-strict-aliasing -fwrapv -fexcess-
precision=standard -Wno-format-truncation -Wno-stringop-truncation -O2 -g -
pipe -Wall -Werror=format-security -Wp,-D_FORTIFY_SOURCE=2 -Wp,-
D_GLIBCXX_ASSERTIONS -fexceptions -fstack-protector-strong -grecord-gcc-
switches -specs=/usr/lib/rpm/redhat/redhat-hardened-cc1 -
specs=/usr/lib/rpm/redhat/redhat-annobin-cc1 -m64 -mtune=generic -
fasynchronous-unwind-tables -fstack-clash-protection -fcf-protection -fPIC -
I. -I./ -I/usr/pgsql-13/include/server -I/usr/pgsql-13/include/internal -
D_GNU_SOURCE -I/usr/include/libxml2 -I/usr/include -c -o set_user.o
set_user.c
gcc -Wall -Wmissing-prototypes -Wpointer-arith -Wdeclaration-after-statement
-Werror=vla -Wendif-labels -Wmissing-format-attribute -Wimplicit-
fallthrough=3 -Wformat-security -fno-strict-aliasing -fwrapv -fexcess-
precision=standard -Wno-format-truncation -Wno-stringop-truncation -O2 -g -
pipe -Wall -Werror=format-security -Wp,-D_FORTIFY_SOURCE=2 -Wp,-
D_GLIBCXX_ASSERTIONS -fexceptions -fstack-protector-strong -grecord-gcc-
switches -specs=/usr/lib/rpm/redhat/redhat-hardened-cc1 -
specs=/usr/lib/rpm/redhat/redhat-annobin-cc1 -m64 -mtune=generic -

	

99	|	P a g e 	
	

fasynchronous-unwind-tables -fstack-clash-protection -fcf-protection -fPIC
set_user.o -L/usr/pgsql-13/lib -Wl,--as-needed -L/usr/lib64 -L/usr/lib64 -
Wl,--as-needed -Wl,-rpath,'/usr/pgsql-13/lib',--enable-new-dtags -lm -shared
-o set_user.so
/usr/bin/clang -Wno-ignored-attributes -fno-strict-aliasing -fwrapv -O2 -I.
-I./ -I/usr/pgsql-13/include/server -I/usr/pgsql-13/include/internal -
D_GNU_SOURCE -I/usr/include/libxml2 -I/usr/include -flto=thin -emit-llvm -c
-o set_user.bc set_user.c
/usr/bin/mkdir -p '/usr/pgsql-13/share/extension'
/usr/bin/mkdir -p '/usr/pgsql-13/share/extension'
/usr/bin/mkdir -p '/usr/pgsql-13/lib'
/usr/bin/mkdir -p "/usr/pgsql-13/include"
/usr/bin/install -c -m 644 "set_user.h" "/usr/pgsql-13/include"
/usr/bin/install -c -m 644 .//set_user.control '/usr/pgsql-
13/share/extension/'
/usr/bin/install -c -m 644 .//set_user--2.0.sql .//set_user--1.6--2.0.sql
.//set_user--1.5--1.6.sql .//set_user--1.4--1.5.sql .//set_user--1.1--1.4.sql
.//set_user--1.0--1.1.sql '/usr/pgsql-13/share/extension/'
/usr/bin/install -c -m 755 set_user.so '/usr/pgsql-13/lib/'
/usr/bin/mkdir -p '/usr/pgsql-13/lib/bitcode/set_user'
/usr/bin/mkdir -p '/usr/pgsql-13/lib/bitcode'/set_user/
/usr/bin/install -c -m 644 set_user.bc '/usr/pgsql-
13/lib/bitcode'/set_user/./
cd '/usr/pgsql-13/lib/bitcode' && /usr/bin/llvm-lto -thinlto -thinlto-
action=thinlink -o set_user.index.bc set_user/set_user.bc
$

Now	that	set_user	is	installed,	we	need	to	tell	PostgreSQL	to	load	its	library:

$ whoami
root
$ vi ~postgres/13/data/postgresql.conf

Find	the	shared_preload_libraries	entry,	and	add	'set_user'	to	it	(preserving	any	existing	
entries):

shared_preload_libraries = 'set_user'

OR

shared_preload_libraries = 'set_user,pgaudit,somethingelse'

Restart	the	PostgreSQL	server	for	changes	to	take	effect:

$ systemctl restart postgresql-13
$ systemctl status postgresql-13|grep 'ago$'
 Active: active (running) since [timestamp]; 1s ago

And	now,	we	can	install	the	extension	with	SQL:

$ su - postgres
$ psql
postgres=# select * from pg_available_extensions where name = 'set_user';

	

100	|	P a g e 	
	

 name | default_version | installed_version | comment
---------+-----------------+-------------------+-----------------------------
set_user | 2.0 | | similar to SET ROLE but with
 | | | added logging
(1 row)

postgres=# create extension set_user;
CREATE EXTENSION
postgres=# select * from pg_available_extensions where name = 'set_user';
 name | default_version | installed_version | comment
---------+-----------------+-------------------+-----------------------------
set_user | 2.0 | 2.0 | similar to SET ROLE but with
 | | | added logging

(1 row)

Now,	we	use	GRANT	to	configure	each	DBA	role	to	allow	it	to	use	the	set_user	functions.	In	
the	example	below,	we	will	configure	my	db	user	doug.	(You	would	do	this	for	each	DBA's	
normal	user	role.)

postgres=# grant execute on function set_user(text) to doug;
GRANT
postgres=# grant execute on function set_user_u(text) to doug;
GRANT

Connect	to	PostgreSQL	as	yourself	and	verify	it	works	as	expected:

$ whoami
psql
$ psql -U doug -d postgres
postgres=> select set_user('postgres');
ERROR: switching to superuser not allowed
HINT: Use 'set_user_u' to escalate.
postgres=> select set_user_u('postgres');
 set_user_u

 OK
(1 row)

postgres=# select current_user, session_user;
 current_user | session_user
--------------+--------------
 postgres | doug
(1 row)

postgres=# select reset_user();
 reset_user

 OK
(1 row)

postgres=> select current_user, session_user;
 current_user | session_user
--------------+--------------

	

101	|	P a g e 	
	

 doug | doug
(1 row)

Once	all	DBA's	normal	user	accounts	have	been	GRANTed	permission,	revoke	the	ability	to	
login	as	the	postgres	(superuser)	user:

postgres=# alter user postgres NOLOGIN;
ALTER ROLE

Which	results	in:

$ psql
psql: FATAL: role "postgres" is not permitted to log in
$ psql -U doug -d postgres
psql (13.1)

Make	sure	there	are	no	other	roles	that	are	superuser's	and	can	still	login:

postgres=# SELECT rolname FROM pg_authid WHERE rolsuper and rolcanlogin;
 rolname

(0 rows)

Verify	there	are	no	unprivileged	roles	that	can	login	directly	that	are	granted	a	superuser	
role	even	if	it	is	multiple	layers	removed:

postgres=#
-- Verify there are no unprivileged roles that can login directly
-- that are granted a superuser role even if it is multiple layers
-- removed
DROP VIEW IF EXISTS roletree;
CREATE OR REPLACE VIEW roletree AS
WITH RECURSIVE
roltree AS (
 SELECT u.rolname AS rolname,
 u.oid AS roloid,
 u.rolcanlogin,
 u.rolsuper,
 '{}'::name[] AS rolparents,
 NULL::oid AS parent_roloid,
 NULL::name AS parent_rolname
 FROM pg_catalog.pg_authid u
 LEFT JOIN pg_catalog.pg_auth_members m on u.oid = m.member
 LEFT JOIN pg_catalog.pg_authid g on m.roleid = g.oid
 WHERE g.oid IS NULL
 UNION ALL
 SELECT u.rolname AS rolname,
 u.oid AS roloid,
 u.rolcanlogin,
 u.rolsuper,
 t.rolparents || g.rolname AS rolparents,
 g.oid AS parent_roloid,
 g.rolname AS parent_rolname

	

102	|	P a g e 	
	

 FROM pg_catalog.pg_authid u
 JOIN pg_catalog.pg_auth_members m on u.oid = m.member
 JOIN pg_catalog.pg_authid g on m.roleid = g.oid
 JOIN roltree t on t.roloid = g.oid
)
SELECT
 r.rolname,
 r.roloid,
 r.rolcanlogin,
 r.rolsuper,
 r.rolparents
FROM roltree r
ORDER BY 1;

SELECT
 ro.rolname,
 ro.roloid,
 ro.rolcanlogin,
 ro.rolsuper,
 ro.rolparents
FROM roletree ro
WHERE (ro.rolcanlogin AND ro.rolsuper)
OR
(
 ro.rolcanlogin AND EXISTS
 (
 SELECT TRUE FROM roletree ri
 WHERE ri.rolname = ANY (ro.rolparents)
 AND ri.rolsuper
)
);
 rolname | roloid | rolcanlogin | rolsuper | rolparents
---------+--------+-------------+----------+------------
(0 rows)

If	any	roles	are	identified	by	this	query,	use	REVOKE	to	correct.

References:	

1. https://github.com/pgaudit/set_user	

CIS	Controls:	

Version	6	

	 5.1	Minimize	And	Sparingly	Use	Administrative	Privileges	
	 Minimize	administrative	privileges	and	only	use	administrative	accounts	when	they	are	
required.	Implement	focused	auditing	on	the	use	of	administrative	privileged	functions	and	
monitor	for	anomalous	behavior.	

	 5.8	Administrators	Should	Not	Directly	Log	In	To	A	System	(i.e.	use	RunAs/sudo)	
	 Administrators	should	be	required	to	access	a	system	using	a	fully	logged	and	non-

	

103	|	P a g e 	
	

administrative	account.	Then,	once	logged	on	to	the	machine	without	administrative	
privileges,	the	administrator	should	transition	to	administrative	privileges	using	tools	such	
as	Sudo	on	Linux/UNIX,	RunAs	on	Windows,	and	other	similar	facilities	for	other	types	of	
systems.	

Version	7	

	 4.3	Ensure	the	Use	of	Dedicated	Administrative	Accounts	
	 Ensure	that	all	users	with	administrative	account	access	use	a	dedicated	or	secondary	
account	for	elevated	activities.	This	account	should	only	be	used	for	administrative	
activities	and	not	internet	browsing,	email,	or	similar	activities.	

	

104	|	P a g e 	
	

4.8 Make use of default roles (Manual)

Profile	Applicability:	

•		Level	1	-	PostgreSQL	

Description:	

PostgreSQL	provides	a	set	of	default	roles	which	provide	access	to	certain,	commonly	
needed,	privileged	capabilities	and	information.	Administrators	can	GRANT	these	roles	to	
users	and/or	other	roles	in	their	environment,	providing	those	users	with	access	to	the	
specified	capabilities	and	information.	

Rationale:	

In	keeping	with	the	principle	of	least	privilege,	judicious	use	of	the	PostgreSQL	default	roles	
can	greatly	limit	the	access	to	privileged,	or	superuser,	access.	

Audit:	

Review	the	list	of	all	database	roles	that	have	superuser	access	and	determine	if	one	or	
more	the	default	roles	would	suffice	for	the	needs	of	that	role:	

$ whoami
postgres
$ psql
postgres=# select rolname from pg_roles where rolsuper is true;
 rolname

 postgres
 doug
(2 rows)

Remediation:

If	you've	determined	that	one	or	more	of	the	default	roles	can	be	used,	simply	GRANT	it:	

postgres=# GRANT pg_monitor TO doug;
GRANT ROLE

And	then	remove	superuser	from	the	account:

postgres=# ALTER ROLE doug NOSUPERUSER;
ALTER ROLE
postgres=# select rolname from pg_roles where rolsuper is true;
 rolname

105	|	P a g e 	
	

 postgres
(1 row)

Default	Value:

The	following	default	roles	exist	in	PostgreSQL	13.x:	

• pg_read_all_settings	Read	all	configuration	variables,	even	those	normally	visible	
only	to	superusers.	

• pg_read_all_stats	Read	all	pg_stat_*	views	and	use	various	statistics	related	
extensions,	even	those	normally	visible	only	to	superusers.	

• pg_stat_scan_tables	Execute	monitoring	functions	that	may	take	ACCESS SHARE	
locks	on	tables,	potentially	for	a	long	time.	

• pg_signal_backend	Send	signals	to	other	backends	(eg:	cancel	query,	terminate).	
• pg_read_server_files	Allow	reading	files	from	any	location	the	database	can	

access	on	the	server	with	COPY	and	other	file-access	functions.	
• pg_write_server_files	Allow	writing	to	files	in	any	location	the	database	can	

access	on	the	server	with	COPY	and	other	file-access	functions.	
• pg_execute_server_program	Allow	executing	programs	on	the	database	server	as	

the	user	the	database	runs	as	with	COPY	and	other	functions	which	allow	executing	
a	server-side	program.	

• pg_monitor	Read/execute	various	monitoring	views	and	functions.	This	role	is	a	
member	of	pg_read_all_settings,	pg_read_all_stats	and	pg_stat_scan_tables.	

Administrators	can	grant	access	to	these	roles	to	users	using	the	GRANT	command.	

References:	

1. https://www.postgresql.org/docs/current/default-roles.html	

CIS	Controls:	

Version	7	

	 5.1	Establish	Secure	Configurations	
	 Maintain	documented,	standard	security	configuration	standards	for	all	authorized	
operating	systems	and	software.	

	

106	|	P a g e 	
	

5 Connection and Login

The	restrictions	on	client/user	connections	to	the	PostgreSQL	database	blocks	
unauthorized	access	to	data	and	services	by	setting	access	rules.	These	security	measures	
help	to	ensure	that	successful	logins	cannot	be	easily	made	through	brute-force	password	
attacks,	pass	the	hash,	or	intuited	by	clever	social	engineering	exploits.	

Settings	are	generally	recommended	to	be	applied	to	all	defined	profiles.	The	following	
presents	standalone	examples	of	logins	for	particular	use	cases.	The	authentication	rules	
are	read	from	the	PostgreSQL	host-based	authentication	file,	pg_hba.conf,	from	top	to	
bottom.	The	first	rule	conforming	to	the	condition	of	the	request	executes	the	METHOD	and	
stops	further	processing	of	the	file.	Incorrectly	applied	rules,	as	defined	by	a	single	line	
instruction,	can	substantially	alter	the	intended	behavior	resulting	in	either	allowing	or	
denying	login	attempts.	

It	is	strongly	recommended	that	authentication	configurations	be	constructed	
incrementally	with	rigid	testing	for	each	newly	applied	rule.	Because	of	the	large	number	of	
different	variations,	this	benchmark	limits	itself	to	a	small	number	of	authentication	
methods	that	can	be	successfully	applied	under	most	circumstances.	Further	analysis,	using	
the	other	authentication	methods	available	in	PostgreSQL,	is	encouraged.	

5.1 Ensure login via "local" UNIX Domain Socket is configured correctly
(Manual)

Profile	Applicability:	

•		Level	1	-	PostgreSQL	on	Linux	

Description:	

A	remote	host	login,	via	ssh,	is	arguably	the	most	secure	means	of	remotely	accessing	and	
administering	the	PostgreSQL	server.	Connecting	with	the	psql	client,	via	UNIX	DOMAIN	
SOCKETS,	using	the	peer	authentication	method	is	the	most	secure	mechanism	available	
for	local	connections.	Provided	a	database	user	account	of	the	same	name	of	the	UNIX	
account	has	already	been	defined	in	the	database,	even	ordinary	user	accounts	can	access	
the	cluster	in	a	similarly	highly	secure	manner.	

Audit:	

Newly	created	data	clusters	are	empty	of	data	and	have	only	one	user	account,	the	
superuser	(postgres).	By	default,	the	data	cluster	superuser	is	named	after	the	UNIX	

	

107	|	P a g e 	
	

account.	Login	authentication	is	tested	via	UNIX	DOMAIN	SOCKETS	by	the	UNIX	user	
account	postgres,	the	default	account,	and	set_user	has	not	yet	been	configured:	

$ whoami
postgres
$ psql postgres
postgres=#

Login	attempts	by	another	UNIX	user	account	as	the	superuser	should	be	denied:

$ su - user1
$ whoami
user1
$ psql -U postgres -d postgres
psql: FATAL: Peer authentication failed for user "postgres"
$ exit

This	test	demonstrates	that	not	only	is	logging	in	as	the	superuser	blocked,	but	so	is	logging	
in	as	another	user:

$ su - user2
$ whoami
user2
$ psql -U postgres -d postgres
psql: FATAL: Peer authentication failed for user "postgres"
$ psql -U user1 -d postgres
psql: FATAL: Peer authentication failed for user "user1"
$ psql -U user2 -d postgres
postgres=>

Remediation:

Creation	of	a	database	account	that	matches	the	local	account	allows	PEER	authentication:	

$ psql -c "CREATE ROLE user1 WITH LOGIN;"
CREATE ROLE

Execute	the	following	as	the	UNIX	user	account,	the	default	authentication	rules	should	
now	permit	the	login:

$ su - user1
$ whoami
user1
$ psql -d postgres
postgres=>

As	per	the	host-based	authentication	rules	in	$PGDATA/pg_hba.conf,	all	login	attempts	via	
UNIX	DOMAIN	SOCKETS	are	processed	on	the	line	beginning	with	local.	

This	is	the	minimal	rule	that	must	be	in	place	allowing	PEER	connections:

	

108	|	P a g e 	
	

TYPE DATABASE USER ADDRESS METHOD
local all postgres peer

More	traditionally,	a	rule	like	the	following	would	be	used	to	allow	any	local	PEER	
connection:

TYPE DATABASE USER ADDRESS METHOD
local all all peer

Once	edited,	the	server	process	must	reload	the	authentication	file	before	it	can	take	effect.	
Improperly	configured	rules	cannot	update	i.e.	the	old	rules	remain	in	place.	The	
PostgreSQL	logs	will	report	the	outcome	of	the	SIGHUP:

postgres=# select pg_reload_conf();
 pg_reload_conf

 t
(1 row)

The	following	examples	illustrate	other	possible	configurations.	The	resultant	"rule"	of	
success/failure	depends	upon	the	first	matching	line:

allow postgres user logins locally via UNIX socket
TYPE DATABASE USER ADDRESS METHOD
local all postgres peer

allow all local users via UNIX socket
TYPE DATABASE USER ADDRESS METHOD
local all all peer

allow all local users, via UNIX socket, only if they are connecting to a db
named the same as their username
e.g. if user 'bob' is connecting to a db named 'bob'
TYPE DATABASE USER METHOD
local samerole all peer

allow only local users, via UNIX socket, who are members of the 'rw' role
in the db
TYPE DATABASE USER ADDRESS METHOD
local all +rw peer

References:

1. https://www.postgresql.org/docs/current/static/client-authentication.html	
2. https://www.postgresql.org/docs/current/static/auth-pg-hba-conf.html	 	

	

109	|	P a g e 	
	

CIS	Controls:	

Version	6	

	 3.4	Use	Only	Secure	Channels	For	Remote	System	Administration	
	 Perform	all	remote	administration	of	servers,	workstation,	network	devices,	and	similar	
equipment	over	secure	channels.	Protocols	such	as	telnet,	VNC,	RDP,	or	others	that	do	not	
actively	support	strong	encryption	should	only	be	used	if	they	are	performed	over	a	
secondary	encryption	channel,	such	as	SSL,	TLS	or	IPSEC.	

Version	7	

	 4.5	Use	Multifactor	Authentication	For	All	Administrative	Access	
	 Use	multi-factor	authentication	and	encrypted	channels	for	all	administrative	account	
access.	

	

110	|	P a g e 	
	

5.2 Ensure login via "host" TCP/IP Socket is configured correctly
(Manual)

Profile	Applicability:	

•		Level	1	-	PostgreSQL	on	Linux	

Description:	

A	large	number	of	authentication	METHODs	are	available	for	hosts	connecting	using	
TCP/IP	sockets,	including:	

• trust		
• reject		
• md5		
• scram-sha-256		
• password		
• gss		
• sspi		
• ident		
• pam		
• ldap		
• radius		
• cert		

METHODs	trust,	password,	and	ident	are	not	to	be	used	for	remote	logins.	METHOD	md5	is	
the	most	popular	and	can	be	used	in	both	encrypted	and	unencrypted	sessions,however,	it	
is	vulnerable	to	packet	replay	attacks.	It	is	recommended	that	scram-sha-256	be	used	
instead	of	md5.	

Use	of	the	gss,	sspi,	pam,	ldap,	radius,	and	cert	METHODs,	while	more	secure	than	md5,	
are	dependent	upon	the	availability	of	external	authenticating	processes/services	and	thus	
are	not	covered	in	this	benchmark.	

Rationale:	

Audit:	

Newly	created	data	clusters	are	empty	of	data	and	have	one	only	one	user	account,	the	
superuser.	By	default,	the	data	cluster	superuser	is	named	after	the	UNIX	account	
postgres.	Login	authentication	can	be	tested	via	TCP/IP	SOCKETS	by	any	UNIX	user	
account	from	the	localhost.	A	password	must	be	assigned	to	each	login	ROLE:	

postgres=# ALTER ROLE postgres WITH PASSWORD 'secret_password';
ALTER ROLE

	

111	|	P a g e 	
	

Test	an	unencrypted	session:

$ psql 'host=localhost user=postgres sslmode=disable'
Password:

Test	an	encrypted	session:

$ psql 'host=localhost user=postgres sslmode=require'
Password:

Remote	logins	repeat	the	previous	invocations	but,	of	course,	from	the	remote	host:	
Test	unencrypted	session:

$ psql 'host=server-name-or-IP user=postgres sslmode=disable'
Password:

Test	encrypted	sessions:

$ psql 'host=server-name-or-IP user=postgres sslmode=require'
Password:

Remediation:

Confirm	a	login	attempt	has	been	made	by	looking	for	a	logged	error	message	detailing	the	
nature	of	the	authenticating	failure.	In	the	case	of	failed	login	attempts,	whether	encrypted	
or	unencrypted,	check	the	following:	

• The	server	should	be	sitting	on	a	port	exposed	to	the	remote	connecting	host	i.e.	
NOT	ip	address	127.0.0.1	

listen_addresses = '*'

• An	authenticating	rule	must	exist	in	the	file	pg_hba.conf

This	example	permits	only	encrypted	sessions	for	the	postgres	role	and	denies	all	
unencrypted	session	for	the	postgres	role:	

TYPE DATABASE USER ADDRESS METHOD
hostssl all postgres 0.0.0.0/0 scram-sha-256
hostnossl all postgres 0.0.0.0/0 reject

The	following	examples	illustrate	other	possible	configurations.	The	resultant	"rule"	of	
success/failure	depends	upon	the	first	matching	line.

allow 'postgres' user only from 'localhost/loopback' connections
and only if you know the password
TYPE DATABASE USER ADDRESS METHOD

	

112	|	P a g e 	
	

host all postgres 127.0.0.1/32 scram-sha-
256

allow users to connect remotely only to the database named after them,
with the correct user password:
(accepts both SSL and non-SSL connections)
TYPE DATABASE USER ADDRESS METHOD
host samerole all 0.0.0.0/0 scram-sha-
256

allow only those users who are a member of the 'rw' role to connect
only to the database named after them, with the correct user password:
(accepts both SSL and non-SSL connections)
TYPE DATABASE USER ADDRESS METHOD
host samerole +rw 0.0.0.0/0 scram-sha-
256

Default	Value:

The	availability	of	the	different	password-based	authentication	methods	depends	on	how	a	
user's	password	on	the	server	is	encrypted	(or	hashed,	more	accurately).	This	is	controlled	
by	the	configuration	parameter	password_encryption	at	the	time	the	password	is	set.	

If	a	password	was	encrypted	using	the	scram-sha-256	setting,	then	it	can	be	used	for	the	
authentication	methods	scram-sha-256	and	password	(but	password	transmission	will	be	
in	plain	text	in	the	latter	case).	The	authentication	method	specification	md5	will	
automatically	switch	to	using	the	scram-sha-256	method	in	this	case,	as	explained	above,	
so	it	will	also	work.	

If	a	password	was	encrypted	using	the	md5	setting,	then	it	can	be	used	only	for	the	md5	and	
password	authentication	method	specifications	(again,	with	the	password	transmitted	in	
plain	text	in	the	latter	case).	

Previous	PostgreSQL	releases	supported	storing	the	password	on	the	server	in	plain	text.	
This	is	no	longer	possible.	

To	check	the	currently	stored	password	hashes,	see	the	system	catalog	pg_authid.	To	
upgrade	an	existing	installation	from	md5	to	scram-sha-256,	after	having	ensured	that	all	
client	libraries	in	use	are	new	enough	to	support	SCRAM,	set	password_encryption =
'scram-sha-256'	in	postgresql.conf,	reload	the	postmaster,	make	all	users	set	new	
passwords,	and	change	the	authentication	method	specifications	in	pg_hba.conf	to	scram-
sha-256.	

References:	

1. https://www.postgresql.org/docs/current/static/client-authentication.html	
2. https://www.postgresql.org/docs/current/static/auth-pg-hba-conf.html	

	

113	|	P a g e 	
	

3. https://tools.ietf.org/html/rfc7677	

Additional	Information:	

1. Use	TYPE	hostssl	when	administrating	the	database	cluster	as	a	superuser.	
2. Use	TYPE	hostnossl	for	performance	purposes	and	when	DML	operations	are	

deemed	safe	without	SSL	connections.	
3. No	examples	have	been	given	for	ADDRESS,	i.e.,	CIDR,	hostname,	domain	names,	etc.	
4. Only	three	(3)	types	of	METHOD	have	been	documented;	there	are	many	more.	

CIS	Controls:	

Version	6	

	 14.2	Encrypt	All	Sensitive	Information	Over	Less-trusted	Networks	
	 All	communication	of	sensitive	information	over	less-trusted	networks	should	be	
encrypted.	Whenever	information	flows	over	a	network	with	a	lower	trust	level,	the	
information	should	be	encrypted.	

Version	7	

	 14.4	Encrypt	All	Sensitive	Information	in	Transit	
	 Encrypt	all	sensitive	information	in	transit.	

	

114	|	P a g e 	
	

6 PostgreSQL Settings

As	PostgreSQL	evolves	with	each	new	iteration,	configuration	parameters	are	constantly	
being	added,	deprecated,	or	removed.	These	configuration	parameters	define	not	only	
server	function	but	how	well	it	performs.	

Many	routine	activities,	combined	with	a	specific	set	of	configuration	parameter	values,	can	
sometimes	result	in	degraded	performance	and,	under	a	specific	set	of	conditions,	even	
comprise	the	security	of	the	RDBMS.	The	fact	of	the	matter	is	that	any	parameter	has	the	
potential	to	affect	the	accessibility	and	performance	of	a	running	server.	

Rather	than	describing	all	the	possible	combination	of	events,	this	benchmark	describes	
how	a	parameter	can	be	compromised.	Examples	reflect	the	most	common,	and	easiest	to	
understand,	exploits.	Although	by	no	means	exhaustive,	it	is	hoped	that	you	will	be	able	to	
understand	the	attack	vectors	in	the	context	of	your	environment.	

6.1 Ensure 'Attack Vectors' Runtime Parameters are Configured
(Manual)

Profile	Applicability:	

•		Level	1	-	PostgreSQL	

•		Level	1	-	PostgreSQL	on	Linux	

Description:	

Understanding	the	vulnerability	of	PostgreSQL	runtime	parameters	by	the	particular	
delivery	method,	or	attack	vector.	

Rationale:	

There	are	as	many	ways	of	compromising	a	server	as	there	are	runtime	parameters.	A	
combination	of	any	one	or	more	of	them	executed	at	the	right	time	under	the	right	
conditions	has	the	potential	to	compromise	the	RDBMS.	Mitigating	risk	is	dependent	upon	
one's	understanding	of	the	attack	vectors	and	includes:	

1. Via	user	session:	includes	those	runtime	parameters	that	can	be	set	by	a	ROLE	that	
persists	for	the	life	of	a	server-client	session.	

2. Via	attribute:	includes	those	runtime	parameters	that	can	be	set	by	a	ROLE	during	a	
server-client	session	that	can	be	assigned	as	an	attribute	for	an	entity	such	as	a	
table,	index,	database,	or	role.	

	

115	|	P a g e 	
	

3. Via	server	reload:	includes	those	runtime	parameters	that	can	be	set	by	the	
superuser	using	a	SIGHUP	or	configuration	file	reload	command	and	affects	the	
entire	cluster.	

4. Via	server	restart:	includes	those	runtime	parameters	that	can	be	set	and	effected	by	
restarting	the	server	process	and	affects	the	entire	cluster.	

Impact:	

It	can	be	difficult	to	totally	eliminate	risk.	Once	changed,	detecting	a	miscreant	parameter	
can	become	problematic.	

Audit:	

Review	all	configuration	settings.	Configure	PostgreSQL	logging	to	record	all	modifications	
and	changes	to	the	RDBMS.	

Remediation:	

In	the	case	of	a	changed	parameter,	the	value	is	returned	back	to	its	default	value.	In	the	
case	of	a	successful	exploit	of	an	already	set	runtime	parameter	then	an	analysis	must	be	
carried	out	determining	the	best	approach	mitigating	the	risk.	

References:	

1. https://www.postgresql.org/docs/current/static/runtime-config.html	

CIS	Controls:	

Version	6	

	 18.7	Use	Standard	Database	Hardening	Templates	
	 For	applications	that	rely	on	a	database,	use	standard	hardening	configuration	templates.	
All	systems	that	are	part	of	critical	business	processes	should	also	be	tested.	

Version	7	

	 18.11	Use	Standard	Hardening	Configuration	Templates	for	Databases	
	 For	applications	that	rely	on	a	database,	use	standard	hardening	configuration	templates.	
All	systems	that	are	part	of	critical	business	processes	should	also	be	tested.	

	

116	|	P a g e 	
	

6.2 Ensure 'backend' runtime parameters are configured correctly
(Automated)

Profile	Applicability:	

•		Level	1	-	PostgreSQL	

•		Level	1	-	PostgreSQL	on	Linux	

Description:	

In	order	to	serve	multiple	clients	efficiently,	the	PostgreSQL	server	launches	a	new	
"backend"	process	for	each	client.	The	runtime	parameters	in	this	benchmark	section	are	
controlled	by	the	backend	process.	The	server's	performance,	in	the	form	of	slow	queries	
causing	a	denial	of	service,	and	the	RDBM's	auditing	abilities	for	determining	root	cause	
analysis	can	be	compromised	via	these	parameters.	

Rationale:	

A	denial	of	service	is	possible	by	denying	the	use	of	indexes	and	by	slowing	down	client	
access	to	an	unreasonable	level.	Unsanctioned	behavior	can	be	introduced	by	introducing	
rogue	libraries	which	can	then	be	called	in	a	database	session.	Logging	can	be	altered	and	
obfuscated	inhibiting	root	cause	analysis.	

Impact:	

All	changes	made	on	this	level	will	affect	the	overall	behavior	of	the	server.	These	changes	
can	only	be	affected	by	a	server	restart	after	the	parameters	have	been	altered	in	the	
configuration	files.	

Audit:	

Issue	the	following	command	to	verify	the	backend	runtime	parameters	are	configured	
correctly:	

postgres=# SELECT name, setting FROM pg_settings WHERE context IN
('backend','superuser-backend') ORDER BY 1;
 name | setting
-----------------------+---------
 ignore_system_indexes | off
 jit_debugging_support | off
 jit_profiling_support | off
 log_connections | on
 log_disconnections | on
 post_auth_delay | 0
(6 rows)

	

117	|	P a g e 	
	

Note:	Effecting	changes	to	these	parameters	can	only	be	made	at	server	start.	Therefore,	a	
successful	exploit	may	not	be	detected	until	after	a	server	restart,	e.g.,	during	a	maintenance	
window.

Remediation:	

Once	detected,	the	unauthorized/undesired	change	can	be	corrected	by	altering	the	
configuration	file	and	executing	a	server	restart.	In	the	case	where	the	parameter	has	been	
on	the	command	line	invocation	of	pg_ctl	the	restart	invocation	is	insufficient	and	an	
explicit	stop	and	start	must	instead	be	made.	

1. Query	the	view	pg_settings	and	compare	with	previous	query	outputs	for	any	
changes.	

2. Review	configuration	files	postgresql.conf	and	postgresql.auto.conf	and	
compare	them	with	previously	archived	file	copies	for	any	changes.	

3. Examine	the	process	output	and	look	for	parameters	that	were	used	at	server	
startup:	

ps -few | grep -E '[p]ost' | grep -- '-[D]'

References:

1. https://www.postgresql.org/docs/current/static/view-pg-settings.html	
2. https://www.postgresql.org/docs/current/static/runtime-config.html	

CIS	Controls:	

Version	6	

	 18.7	Use	Standard	Database	Hardening	Templates	
	 For	applications	that	rely	on	a	database,	use	standard	hardening	configuration	templates.	
All	systems	that	are	part	of	critical	business	processes	should	also	be	tested.	

Version	7	

	 18.11	Use	Standard	Hardening	Configuration	Templates	for	Databases	
	 For	applications	that	rely	on	a	database,	use	standard	hardening	configuration	templates.	
All	systems	that	are	part	of	critical	business	processes	should	also	be	tested.	

	

118	|	P a g e 	
	

6.3 Ensure 'Postmaster' Runtime Parameters are Configured (Manual)

Profile	Applicability:	

•		Level	1	-	PostgreSQL	

•		Level	1	-	PostgreSQL	on	Linux	

Description:	

PostgreSQL	runtime	parameters	that	are	executed	by	the	postmaster	process.	

Rationale:	

The	postmaster	process	is	the	supervisory	process	that	assigns	a	backend	process	to	an	
incoming	client	connection.	The	postmaster	manages	key	runtime	parameters	that	are	
either	shared	by	all	backend	connections	or	needed	by	the	postmaster	process	itself	to	run.	

Impact:	

All	changes	made	on	this	level	will	affect	the	overall	behavior	of	the	server.	These	changes	
can	be	effected	by	editing	the	PostgreSQL	configuration	files	and	by	either	executing	a	
server	SIGHUP	from	the	command	line	or,	as	superuser	postgres,	executing	the	SQL	
command	select pg_reload_conf().	A	denial	of	service	is	possible	by	the	over-allocating	
of	limited	resources,	such	as	RAM.	Data	can	be	corrupted	by	allowing	damaged	pages	to	
load	or	by	changing	parameters	to	reinterpret	values	in	an	unexpected	fashion,	e.g.	
changing	the	time	zone.	Client	messages	can	be	altered	in	such	a	way	as	to	interfere	with	
the	application	logic.	Logging	can	be	altered	and	obfuscated	inhibiting	root	cause	analysis.	

Audit:	

The	following	parameters	can	only	be	set	at	server	start	by	the	owner	of	the	PostgreSQL	
server	process	and	cluster,	typically	the	UNIX	user	account	postgres.	Therefore,	all	exploits	
require	the	successful	compromise	of	either	that	UNIX	account	or	the	postgres	superuser	
account	itself.	

postgres=# SELECT name, setting FROM pg_settings WHERE context = 'postmaster'
ORDER BY 1;
 name | setting
-------------------------------------+---------------------------------------
-
 archive_mode | off
 autovacuum_freeze_max_age | 200000000
 autovacuum_max_workers | 3
 autovacuum_multixact_freeze_max_age | 400000000
 bonjour | off

	

119	|	P a g e 	
	

 bonjour_name |
 cluster_name |
 config_file | /var/lib/pgsql/13/data/postgresql.conf
 data_directory | /var/lib/pgsql/13/data
 data_sync_retry | off
 dynamic_shared_memory_type | posix
 event_source | PostgreSQL
 external_pid_file |
 hba_file | /var/lib/pgsql/13/data/pg_hba.conf
 hot_standby | on
 huge_pages | try
 ident_file | /var/lib/pgsql/13/data/pg_ident.conf
 ignore_invalid_pages | off
 jit_provider | llvmjit
 listen_addresses | localhost
 logging_collector | on
 max_connections | 100
 max_files_per_process | 1000
 max_locks_per_transaction | 64
 max_logical_replication_workers | 4
 max_pred_locks_per_transaction | 64
 max_prepared_transactions | 0
 max_replication_slots | 10
 max_wal_senders | 10
 max_worker_processes | 8
 old_snapshot_threshold | -1
 port | 5432
 recovery_target |
 recovery_target_action | pause
 recovery_target_inclusive | on
 recovery_target_lsn |
 recovery_target_name |
 recovery_target_time |
 recovery_target_timeline | latest
 recovery_target_xid |
 restore_command |
 shared_buffers | 16384
 shared_memory_type | mmap
 shared_preload_libraries | set_user,pgaudit
 superuser_reserved_connections | 3
 track_activity_query_size | 1024
 track_commit_timestamp | off
 unix_socket_directories | /var/run/postgresql, /tmp
 unix_socket_group |
 unix_socket_permissions | 0777
 wal_buffers | 512
 wal_level | replica
 wal_log_hints | off
(53 rows)

Remediation:

Once	detected,	the	unauthorized/undesired	change	can	be	corrected	by	editing	the	altered	
configuration	file	and	executing	a	server	restart.	In	the	case	where	the	parameter	has	been	
on	the	command	line	invocation	of	pg_ctl	the	restart	invocation	is	insufficient	and	an	

	

120	|	P a g e 	
	

explicit	stop	and	start	must	instead	be	made.	
Detecting	a	change	is	possible	by	one	of	the	following	methods:	

1. Query	the	view	pg_settings	and	compare	with	previous	query	outputs	for	any	
changes	

2. Review	the	configuration	files	postgresql.conf	and	postgresql.auto.conf	and	
compare	with	previously	archived	file	copies	for	any	changes	

3. Examine	the	process	output	and	look	for	parameters	that	were	used	at	server	
startup:	

ps -few | grep -E 'postgres' | grep -- '-[D]'

References:

1. https://www.postgresql.org/docs/current/static/view-pg-settings.html	
2. https://www.postgresql.org/docs/current/static/runtime-config.html	

CIS	Controls:	

Version	6	

	 18	Application	Software	Security	
	 Application	Software	Security	

Version	7	

	 18.11	Use	Standard	Hardening	Configuration	Templates	for	Databases	
	 For	applications	that	rely	on	a	database,	use	standard	hardening	configuration	templates.	
All	systems	that	are	part	of	critical	business	processes	should	also	be	tested.	

	

121	|	P a g e 	
	

6.4 Ensure 'SIGHUP' Runtime Parameters are Configured (Manual)

Profile	Applicability:	

•		Level	1	-	PostgreSQL	

•		Level	1	-	PostgreSQL	on	Linux	

Description:	

PostgreSQL	runtime	parameters	that	are	executed	by	the	SIGHUP	signal.	

Rationale:	

In	order	to	define	server	behavior	and	optimize	server	performance,	the	server's	superuser	
has	the	privilege	of	setting	these	parameters	which	are	found	in	the	configuration	files	
postgresql.conf	and	pg_hba.conf.	Alternatively,	those	parameters	found	in	
postgresql.conf	can	also	be	changed	using	a	server	login	session	and	executing	the	SQL	
command	ALTER SYSTEM	which	writes	its	changes	in	the	configuration	file	
postgresql.auto.conf.	

Impact:	

All	changes	made	on	this	level	will	affect	the	overall	behavior	of	the	server.	These	changes	
can	be	effected	by	editing	the	PostgreSQL	configuration	files	and	by	either	executing	a	
server	SIGHUP	from	the	command	line	or,	as	superuser	postgres,	executing	the	SQL	
command	select pg_reload_conf().	A	denial	of	service	is	possible	by	the	over-allocating	
of	limited	resources,	such	as	RAM.	Data	can	be	corrupted	by	allowing	damaged	pages	to	
load	or	by	changing	parameters	to	reinterpret	values	in	an	unexpected	fashion,	e.g.	
changing	the	time	zone.	Client	messages	can	be	altered	in	such	a	way	as	to	interfere	with	
the	application	logic.	Logging	can	be	altered	and	obfuscated	inhibiting	root	cause	analysis.	

Audit:	

The	following	parameters	can	be	set	at	any	time,	without	interrupting	the	server,	by	the	
owner	of	the	postmaster	server	process	and	cluster	(typically	UNIX	user	account	
postgres).	

postgres=# SELECT name, setting FROM pg_settings WHERE context = 'sighup'
ORDER BY 1;
 name | setting
--+------------------------------------

 archive_cleanup_command |
 archive_command | (disabled)

	

122	|	P a g e 	
	

 archive_timeout | 0
 authentication_timeout | 60
 autovacuum | on
 autovacuum_analyze_scale_factor | 0.1
 autovacuum_analyze_threshold | 50
 autovacuum_naptime | 60
 autovacuum_vacuum_cost_delay | 2
 autovacuum_vacuum_cost_limit | -1
 autovacuum_vacuum_insert_scale_factor | 0.2
 autovacuum_vacuum_insert_threshold | 1000
 autovacuum_vacuum_scale_factor | 0.2
 autovacuum_vacuum_threshold | 50
 autovacuum_work_mem | -1
 bgwriter_delay | 200
 bgwriter_flush_after | 64
 bgwriter_lru_maxpages | 100
 bgwriter_lru_multiplier | 2
 checkpoint_completion_target | 0.5
 checkpoint_flush_after | 32
 checkpoint_timeout | 300
 checkpoint_warning | 30
 db_user_namespace | off
 fsync | on
 full_page_writes | on
 hot_standby_feedback | off
 krb_caseins_users | off
 krb_server_keyfile |
FILE:/etc/sysconfig/pgsql/krb5.keytab
 log_autovacuum_min_duration | -1
 log_checkpoints | off
 log_destination | stderr
 log_directory | log
 log_file_mode | 0600
 log_filename | postgresql-%a.log
 log_hostname | off
 log_line_prefix | %m [%p]
 log_rotation_age | 1440
 log_rotation_size | 0
 log_timezone | Etc/UTC
 log_truncate_on_rotation | on
 max_pred_locks_per_page | 2
 max_pred_locks_per_relation | -2
 max_slot_wal_keep_size | -1
 max_standby_archive_delay | 30000
 max_standby_streaming_delay | 30000
 max_sync_workers_per_subscription | 2
 max_wal_size | 1024
 min_wal_size | 80
 pre_auth_delay | 0
 primary_conninfo |
 primary_slot_name |
 promote_trigger_file |
 recovery_end_command |
 recovery_min_apply_delay | 0
 restart_after_crash | on
 set_user.block_alter_system | on
 set_user.block_copy_program | on

	

123	|	P a g e 	
	

 set_user.block_log_statement | on
 set_user.nosuperuser_target_allowlist | *
 set_user.nosuperuser_target_whitelist | *
 set_user.superuser_allowlist | *
 set_user.superuser_audit_tag | AUDIT
 set_user.superuser_whitelist | *
 ssl | off
 ssl_ca_file |
 ssl_cert_file | server.crt
 ssl_ciphers | HIGH:MEDIUM:+3DES:!aNULL
 ssl_crl_file |
 ssl_dh_params_file |
 ssl_ecdh_curve | prime256v1
 ssl_key_file | server.key
 ssl_max_protocol_version |
 ssl_min_protocol_version | TLSv1.2
 ssl_passphrase_command |
 ssl_passphrase_command_supports_reload | off
 ssl_prefer_server_ciphers | on
 stats_temp_directory | pg_stat_tmp
 synchronous_standby_names |
 syslog_facility | local0
 syslog_ident | postgres
 syslog_sequence_numbers | on
 syslog_split_messages | on
 trace_recovery_messages | log
 vacuum_defer_cleanup_age | 0
 wal_keep_size | 0
 wal_receiver_create_temp_slot | off
 wal_receiver_status_interval | 10
 wal_receiver_timeout | 60000
 wal_retrieve_retry_interval | 5000
 wal_sync_method | fdatasync
 wal_writer_delay | 200
 wal_writer_flush_after | 128
(93 rows)

Remediation:

Restore	all	values	in	the	PostgreSQL	configuration	files	and	invoke	the	server	to	reload	the	
configuration	files.	

References:	

1. https://www.postgresql.org/docs/current/static/view-pg-settings.html	
2. https://www.postgresql.org/docs/current/static/runtime-config.html	

CIS	Controls:	

Version	6	

	 18	Application	Software	Security	
	 Application	Software	Security	

	

124	|	P a g e 	
	

Version	7	

	 18.11	Use	Standard	Hardening	Configuration	Templates	for	Databases	
	 For	applications	that	rely	on	a	database,	use	standard	hardening	configuration	templates.	
All	systems	that	are	part	of	critical	business	processes	should	also	be	tested.	

	

125	|	P a g e 	
	

6.5 Ensure 'Superuser' Runtime Parameters are Configured (Manual)

Profile	Applicability:	

•		Level	1	-	PostgreSQL	

•		Level	1	-	PostgreSQL	on	Linux	

Description:	

PostgreSQL	runtime	parameters	that	can	only	be	executed	by	the	server's	superuser,	which	
is	traditionally	postgres.	

Rationale:	

In	order	to	improve	and	optimize	server	performance,	the	server's	superuser	has	the	
privilege	of	setting	these	parameters	which	are	found	in	the	configuration	file	
postgresql.conf.	Alternatively,	they	can	be	changed	in	a	PostgreSQL	login	session	via	the	
SQL	command	ALTER SYSTEM	which	writes	its	changes	in	the	configuration	file	
postgresql.auto.conf.	

Impact:	

All	changes	made	on	this	level	will	affect	the	overall	behavior	of	the	server.	These	changes	
can	only	be	affected	by	a	server	restart	after	the	parameters	have	been	altered	in	the	
configuration	files.	A	denial	of	service	is	possible	by	the	over	allocating	of	limited	resources,	
such	as	RAM.	Data	can	be	corrupted	by	allowing	damaged	pages	to	load	or	by	changing	
parameters	to	reinterpret	values	in	an	unexpected	fashion,	e.g.	changing	the	time	zone.	
Client	messages	can	be	altered	in	such	a	way	as	to	interfere	with	the	application	logic.	
Logging	can	be	altered	and	obfuscated	inhibiting	root	cause	analysis.	

Audit:	

The	following	parameters	can	only	be	set	at	server	start	by	the	owner	of	the	PostgreSQL	
server	process	and	cluster	i.e.	typically	UNIX	user	account	postgres.	Therefore,	all	exploits	
require	the	successful	compromise	of	either	that	UNIX	account	or	the	postgres	superuser	
account	itself.	

postgres=# SELECT name, setting FROM pg_settings WHERE context = 'superuser'
ORDER BY 1;
 name | setting
-----------------------------+-------------
 allow_system_table_mods | off
 backtrace_functions |
 commit_delay | 0

	

126	|	P a g e 	
	

 deadlock_timeout | 1000
 dynamic_library_path | $libdir
 ignore_checksum_failure | off
 jit_dump_bitcode | off
 lc_messages | en_US.UTF-8
 lo_compat_privileges | off
 log_duration | off
 log_error_verbosity | default
 log_executor_stats | off
 log_lock_waits | off
 log_min_duration_sample | -1
 log_min_duration_statement | -1
 log_min_error_statement | error
 log_min_messages | warning
 log_parameter_max_length | -1
 log_parser_stats | off
 log_planner_stats | off
 log_replication_commands | off
 log_statement | none
 log_statement_sample_rate | 1
 log_statement_stats | off
 log_temp_files | -1
 log_transaction_sample_rate | 0
 max_stack_depth | 2048
 pgaudit.log | ddl,write
 pgaudit.log_catalog | on
 pgaudit.log_client | off
 pgaudit.log_level | log
 pgaudit.log_parameter | off
 pgaudit.log_relation | off
 pgaudit.log_statement_once | off
 pgaudit.role |
 session_preload_libraries |
 session_replication_role | origin
 temp_file_limit | -1
 track_activities | on
 track_counts | on
 track_functions | none
 track_io_timing | off
 update_process_title | on
 wal_compression | off
 wal_consistency_checking |
 wal_init_zero | on
 wal_recycle | on
 zero_damaged_pages | off
(48 rows)

Remediation:

The	exploit	is	made	in	the	configuration	files.	These	changes	are	effected	upon	server	
restart.	Once	detected,	the	unauthorized/undesired	change	can	be	made	by	editing	the	
altered	configuration	file	and	executing	a	server	restart.	In	the	case	where	the	parameter	
has	been	set	on	the	command	line	invocation	of	pg_ctl	the	restart	invocation	is	

	

127	|	P a g e 	
	

insufficient	and	an	explicit	stop	and	start	must	instead	be	made.	
Detecting	a	change	is	possible	by	one	of	the	following	methods:	

1. Query	the	view	pg_settings	and	compare	with	previous	query	outputs	for	any	
changes.	

2. Review	the	configuration	files	postgreql.conf	and	postgreql.auto.conf	and	
compare	with	previously	archived	file	copies	for	any	changes	

3. Examine	the	process	output	and	look	for	parameters	that	were	used	at	server	
startup:	

ps aux | grep -E 'post' | grep -- '-[D]'

References:

1. https://www.postgresql.org/docs/current/static/view-pg-settings.html	
2. https://www.postgresql.org/docs/current/static/runtime-config.html	

CIS	Controls:	

Version	6	

	 5.1	Minimize	And	Sparingly	Use	Administrative	Privileges	
	 Minimize	administrative	privileges	and	only	use	administrative	accounts	when	they	are	
required.	Implement	focused	auditing	on	the	use	of	administrative	privileged	functions	and	
monitor	for	anomalous	behavior.	

Version	7	

	 18.11	Use	Standard	Hardening	Configuration	Templates	for	Databases	
	 For	applications	that	rely	on	a	database,	use	standard	hardening	configuration	templates.	
All	systems	that	are	part	of	critical	business	processes	should	also	be	tested.	

	

128	|	P a g e 	
	

6.6 Ensure 'User' Runtime Parameters are Configured (Manual)

Profile	Applicability:	

•		Level	1	-	PostgreSQL	

•		Level	1	-	PostgreSQL	on	Linux	

Description:	

These	PostgreSQL	runtime	parameters	are	managed	at	the	user	account	(ROLE)	level.	

Rationale:	

In	order	to	improve	performance	and	optimize	features,	a	ROLE	has	the	privilege	of	setting	
numerous	parameters	in	a	transaction,	session,	or	as	an	entity	attribute.	Any	ROLE	can	alter	
any	of	these	parameters.	

Impact:	

A	denial	of	service	is	possible	by	the	over-allocating	of	limited	resources,	such	as	RAM.	
Changing	VACUUM	parameters	can	force	a	server	shutdown	which	is	standard	procedure	
preventing	data	corruption	from	transaction	ID	wraparound.	Data	can	be	corrupted	by	
changing	parameters	to	reinterpret	values	in	an	unexpected	fashion,	e.g.	changing	the	time	
zone.	Logging	can	be	altered	and	obfuscated	to	inhibit	root	cause	analysis.	

Audit:	

The	method	used	to	analyze	the	state	of	ROLE	runtime	parameters	and	to	determine	if	they	
have	been	compromised	is	to	inspect	all	catalogs	and	list	attributes	for	database	entities	
such	as	ROLEs	and	databases:	

postgres=# SELECT name, setting FROM pg_settings WHERE context = 'user' ORDER
BY 1;
 name | setting
-------------------------------------+--------------------
 application_name | psql
 array_nulls | on
 backend_flush_after | 0
 backslash_quote | safe_encoding
 bytea_output | hex
 check_function_bodies | on
 client_encoding | UTF8
 client_min_messages | notice
 commit_siblings | 5
 constraint_exclusion | partition
 cpu_index_tuple_cost | 0.005
 cpu_operator_cost | 0.0025

	

129	|	P a g e 	
	

 cpu_tuple_cost | 0.01
 cursor_tuple_fraction | 0.1
 DateStyle | ISO, MDY
 debug_pretty_print | on
 debug_print_parse | off
 debug_print_plan | off
 debug_print_rewritten | off
 default_statistics_target | 100
 default_table_access_method | heap
 default_tablespace |
 default_text_search_config | pg_catalog.english
 default_transaction_deferrable | off
 default_transaction_isolation | read committed
 default_transaction_read_only | off
 effective_cache_size | 524288
 effective_io_concurrency | 1
 enable_bitmapscan | on
 enable_gathermerge | on
 enable_hashagg | on
 enable_hashjoin | on
 enable_incremental_sort | on
 enable_indexonlyscan | on
 enable_indexscan | on
 enable_material | on
 enable_mergejoin | on
 enable_nestloop | on
 enable_parallel_append | on
 enable_parallel_hash | on
 enable_partition_pruning | on
 enable_partitionwise_aggregate | off
 enable_partitionwise_join | off
 enable_seqscan | on
 enable_sort | on
 enable_tidscan | on
 escape_string_warning | on
 exit_on_error | off
 extra_float_digits | 1
 force_parallel_mode | off
 from_collapse_limit | 8
 geqo | on
 geqo_effort | 5
 geqo_generations | 0
 geqo_pool_size | 0
 geqo_seed | 0
 geqo_selection_bias | 2
 geqo_threshold | 12
 gin_fuzzy_search_limit | 0
 gin_pending_list_limit | 4096
 hash_mem_multiplier | 1
 idle_in_transaction_session_timeout | 0
 IntervalStyle | postgres
 jit | on
 jit_above_cost | 100000
 jit_expressions | on
 jit_inline_above_cost | 500000
 jit_optimize_above_cost | 500000
 jit_tuple_deforming | on

	

130	|	P a g e 	
	

 join_collapse_limit | 8
 lc_monetary | en_US.UTF-8
 lc_numeric | en_US.UTF-8
 lc_time | en_US.UTF-8
 local_preload_libraries |
 lock_timeout | 0
 logical_decoding_work_mem | 65536
 log_parameter_max_length_on_error | 0
 maintenance_io_concurrency | 10
 maintenance_work_mem | 65536
 max_parallel_maintenance_workers | 2
 max_parallel_workers | 8
 max_parallel_workers_per_gather | 2
 min_parallel_index_scan_size | 64
 min_parallel_table_scan_size | 1024
 operator_precedence_warning | off
 parallel_leader_participation | on
 parallel_setup_cost | 1000
 parallel_tuple_cost | 0.1
 password_encryption | md5
 plan_cache_mode | auto
 quote_all_identifiers | off
 random_page_cost | 4
 row_security | on
 search_path | "$user", public
 seq_page_cost | 1
 standard_conforming_strings | on
 statement_timeout | 0
 synchronize_seqscans | on
 synchronous_commit | on
 tcp_keepalives_count | 0
 tcp_keepalives_idle | 0
 tcp_keepalives_interval | 0
 tcp_user_timeout | 0
 temp_buffers | 1024
 temp_tablespaces |
 TimeZone | Etc/UTC
 timezone_abbreviations | Default
 trace_notify | off
 trace_sort | off
 transaction_deferrable | off
 transaction_isolation | read committed
 transaction_read_only | off
 transform_null_equals | off
 vacuum_cleanup_index_scale_factor | 0.1
 vacuum_cost_delay | 0
 vacuum_cost_limit | 200
 vacuum_cost_page_dirty | 20
 vacuum_cost_page_hit | 1
 vacuum_cost_page_miss | 10
 vacuum_freeze_min_age | 50000000
 vacuum_freeze_table_age | 150000000
 vacuum_multixact_freeze_min_age | 5000000
 vacuum_multixact_freeze_table_age | 150000000
 wal_sender_timeout | 60000
 wal_skip_threshold | 2048
 work_mem | 4096

	

131	|	P a g e 	
	

 xmlbinary | base64
 xmloption | content
(128 rows)

Remediation:

In	the	matter	of	a	user	session,	the	login	sessions	must	be	validated	that	it	is	not	executing	
undesired	parameter	changes.	In	the	matter	of	attributes	that	have	been	changed	in	
entities,	they	must	be	manually	reverted	to	its	default	value(s).	

References:	

1. https://www.postgresql.org/docs/current/static/view-pg-settings.html	
2. https://www.postgresql.org/docs/current/static/runtime-config.html	

CIS	Controls:	

Version	6	

	 5.1	Minimize	And	Sparingly	Use	Administrative	Privileges	
	 Minimize	administrative	privileges	and	only	use	administrative	accounts	when	they	are	
required.	Implement	focused	auditing	on	the	use	of	administrative	privileged	functions	and	
monitor	for	anomalous	behavior.	

Version	7	

	 18.11	Use	Standard	Hardening	Configuration	Templates	for	Databases	
	 For	applications	that	rely	on	a	database,	use	standard	hardening	configuration	templates.	
All	systems	that	are	part	of	critical	business	processes	should	also	be	tested.	

	

132	|	P a g e 	
	

6.7 Ensure FIPS 140-2 OpenSSL Cryptography Is Used (Automated)

Profile	Applicability:	

•		Level	1	-	PostgreSQL	on	Linux	

Description:	

Install,	configure,	and	use	OpenSSL	on	a	platform	that	has	a	NIST	certified	FIPS	140-2	
installation	of	OpenSSL.	This	provides	PostgreSQL	instances	the	ability	to	generate	and	
validate	cryptographic	hashes	to	protect	unclassified	information	requiring	confidentiality	
and	cryptographic	protection,	in	accordance	with	the	data	owner's	requirements.	

Rationale:	

Federal	Information	Processing	Standard	(FIPS)	Publication	140-2	is	a	computer	security	
standard	developed	by	a	U.S.	Government	and	industry	working	group	for	validating	the	
quality	of	cryptographic	modules.	Use	of	weak,	or	untested,	encryption	algorithms	
undermine	the	purposes	of	utilizing	encryption	to	protect	data.	PostgreSQL	uses	OpenSSL	
for	the	underlying	encryption	layer.	

The	database	and	application	must	implement	cryptographic	modules	adhering	to	the	
higher	standards	approved	by	the	federal	government	since	this	provides	assurance	they	
have	been	tested	and	validated.	It	is	the	responsibility	of	the	data	owner	to	assess	the	
cryptography	requirements	in	light	of	applicable	federal	laws,	Executive	Orders,	directives,	
policies,	regulations,	and	standards.	

For	detailed	information,	refer	to	NIST	FIPS	Publication	140-2,	Security	Requirements	for	
Cryptographic	Modules.	Note	that	the	product's	cryptographic	modules	must	be	validated	
and	certified	by	NIST	as	FIPS-compliant.	The	security	functions	validated	as	part	of	FIPS	
140-2	for	cryptographic	modules	are	described	in	FIPS	140-2	Annex	A.	Currently	only	Red	
Hat	Enterprise	Linux	is	certified	as	a	FIPS	140-2	distribution	of	OpenSSL.	For	other	
operating	systems,	users	must	obtain	or	build	their	own	FIPS	140-2	OpenSSL	libraries.	

Audit:	

If	PostgreSQL	is	not	installed	on	Red	Hat	Enterprise	Linux	(RHEL)	or	CentOS	then	FIPS	
cannot	be	enabled	natively.	Otherwise,	the	deployment	must	incorporate	a	custom	build	of	
the	operating	system.	
As	the	system	administrator:	

1. Run	the	following	to	see	if	FIPS	is	enabled:	

	

133	|	P a g e 	
	

$ fips-mode-setup --check
Installation of FIPS modules is not completed.
FIPS mode is disabled.

If	FIPS mode is enabled	is	not	displayed,	then	the	system	is	not	FIPS	enabled	and	
this	is	a	fail.

2. Run	the	following	(your	results	and	version	may	vary):	

$ openssl version
OpenSSL 1.1.1g FIPS 21 Apr 2020

If	fips	is	not	included	in	the	OpenSSL	version,	then	the	system	is	not	FIPS	
capableand	this	is	a	fail.

Remediation:	

Configure	OpenSSL	to	be	FIPS	compliant.	PostgreSQL	uses	OpenSSL	for	cryptographic	
modules.	To	configure	OpenSSL	to	be	FIPS	140-2	compliant,	see	the	official	RHEL	
Documentation.	Below	is	a	general	summary	of	the	steps	required:	
To	switch	the	system	to	FIPS	mode	in	RHEL	8:	

fips-mode-setup --enable
Kernel initramdisks are being regenerated. This might take some time.
Setting system policy to FIPS
Note: System-wide crypto policies are applied on application start-up.
It is recommended to restart the system for the change of policies
to fully take place.
FIPS mode will be enabled.
Please reboot the system for the setting to take effect.

Restart	your	system	to	allow	the	kernel	to	switch	to	FIPS	mode:

reboot

After	the	restart,	you	can	check	the	current	state	of	FIPS	mode:

fips-mode-setup --check
FIPS mode is enabled.

References:

1. https://access.redhat.com/documentation/en-
us/red_hat_enterprise_linux/8/html/security_hardening/using-the-system-wide-
cryptographic-policies_security-hardening#switching-the-system-to-fips-
mode_using-the-system-wide-cryptographic-policies	

	

134	|	P a g e 	
	

2. https://csrc.nist.gov/CSRC/media/projects/cryptographic-module-validation-
program/documents/security-policies/140sp1758.pdf	

3. https://csrc.nist.gov/publications/fips	

CIS	Controls:	

Version	6	

	 14.2	Encrypt	All	Sensitive	Information	Over	Less-trusted	Networks	
	 All	communication	of	sensitive	information	over	less-trusted	networks	should	be	
encrypted.	Whenever	information	flows	over	a	network	with	a	lower	trust	level,	the	
information	should	be	encrypted.	

Version	7	

	 14.4	Encrypt	All	Sensitive	Information	in	Transit	
	 Encrypt	all	sensitive	information	in	transit.	

	

135	|	P a g e 	
	

6.8 Ensure SSL is enabled and configured correctly (Automated)

Profile	Applicability:	

•		Level	1	-	PostgreSQL	

•		Level	1	-	PostgreSQL	on	Linux	

Description:	

SSL	on	a	PostgreSQL	server	should	be	enabled	(set	to	on)	and	configured	to	encrypt	TCP	
traffic	to	and	from	the	server.	

Rationale:	

If	SSL	is	not	enabled	and	configured	correctly,	this	increases	the	risk	of	data	being	
compromised	in	transit.	

Impact:	

A	self-signed	certificate	can	be	used	for	testing,	but	a	certificate	signed	by	a	certificate	
authority	(CA)	(either	one	of	the	global	CAs	or	a	local	one)	should	be	used	in	production	so	
that	clients	can	verify	the	server's	identity.	If	all	the	database	clients	are	local	to	the	
organization,	using	a	local	CA	is	recommended.	

To	ultimately	enable	and	enforce	ssl	authentication	for	the	server,	appropriate	hostssl	
records	must	be	added	to	the	pg_hba.conf	file.	Be	sure	to	reload	PostgreSQL	after	any	
changes	(restart	not	required).	

Note:	The	hostssl	record	matches	connection	attempts	made	using	TCP/IP,	but	only	when	
the	connection	is	made	with	SSL	encryption.	The	host	record	matches	attempts	made	using	
TCP/IP,	but	allows	both	SSL	and	non-SSL	connections.	The	hostnossl	record	matches	
attempts	made	using	TCP/IP,	but	only	those	without	SSL.	Care	should	be	taken	to	enforce	
SSL	as	appropriate.	

Audit:	

To	determine	whether	SSL	is	enabled	(set	to	on),	simply	query	the	parameter	value	while	
logged	into	the	database	using	either	the	SHOW ssl	command	or	SELECT	from	system	
catalog	view	pg_settings	as	illustrated	below.	In	both	cases,	ssl	is	off;	this	is	a	fail.	

postgres=# SHOW ssl;
ssl

off

	

136	|	P a g e 	
	

(1 row)

postgres=# SELECT name, setting, source FROM pg_settings WHERE name = 'ssl';
name | setting | source
-----+---------+--------------------
ssl | off | default
(1 row)

Remediation:

For	this	example,	and	ease	of	illustration,	we	will	be	using	a	self-signed	certificate	for	the	
server	generated	via	openssl,	and	the	PostgreSQL	defaults	for	file	naming	and	location	in	
the	PostgreSQL	$PGDATA	directory.	

$ whoami
postgres
$ # create new certificate and enter details at prompts
$ openssl req -new -text -out server.req
Generating a 2048 bit RSA private key
.....................+++
..+++
writing new private key to 'privkey.pem'
Enter PEM pass phrase:
Verifying - Enter PEM pass phrase:

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [XX]:US
State or Province Name (full name) []:Ohio
Locality Name (eg, city) [Default City]:Columbus
Organization Name (eg, company) [Default Company Ltd]:Me Inc
Organizational Unit Name (eg, section) []:IT
Common Name (eg, your name or your server's hostname) []:my.me.inc
Email Address []:me@meinc.com

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:

$ # remove passphrase (required for automatic server start up)
$ openssl rsa -in privkey.pem -out server.key && rm privkey.pem
Enter pass phrase for privkey.pem:
writing RSA key

$ # modify certificate to self signed, generate .key and .crt files
$ openssl req -x509 -in server.req -text -key server.key -out server.crt

$ # copy .key and .crt files to appropriate location, here default $PGDATA
$ cp server.key server.crt $PGDATA

	

137	|	P a g e 	
	

$ # restrict file mode for server.key
$ chmod og-rwx server.key

Edit	the	PostgreSQL	configuration	file	postgresql.conf	to	ensure	the	following	items	are	
set.	Again,	we	are	using	defaults.	Note	that	altering	these	parameters	will	require	restarting	
the	cluster.

(change requires restart)
ssl = on

allowed SSL ciphers
ssl_ciphers = 'HIGH:MEDIUM:+3DES:!aNULL'

(change requires restart)
ssl_cert_file = 'server.crt'

(change requires restart)
ssl_key_file = 'server.key'

password_encryption = scram-sha-256

Finally,	restart	PostgreSQL	and	confirm	ssl	using	commands	outlined	in	Audit	Procedures:

postgres=# show ssl;
 ssl

 on
(1 row)

References:

1. https://www.postgresql.org/docs/current/static/ssl-tcp.html	
2. http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-52r1.pdf	
3. https://www.postgresql.org/docs/current/static/libpq-ssl.html	

CIS	Controls:	

Version	6	

	 14.2	Encrypt	All	Sensitive	Information	Over	Less-trusted	Networks	
	 All	communication	of	sensitive	information	over	less-trusted	networks	should	be	
encrypted.	Whenever	information	flows	over	a	network	with	a	lower	trust	level,	the	
information	should	be	encrypted.	

Version	7	

	 14.4	Encrypt	All	Sensitive	Information	in	Transit	
	 Encrypt	all	sensitive	information	in	transit.	

	

138	|	P a g e 	
	

6.9 Ensure the pgcrypto extension is installed and configured correctly
(Manual)

Profile	Applicability:	

•		Level	1	-	PostgreSQL	

•		Level	1	-	PostgreSQL	on	Linux	

Description:	

PostgreSQL	must	implement	cryptographic	mechanisms	to	prevent	unauthorized	
disclosure	or	modification	of	organization-defined	information	at	rest	(to	include,	at	a	
minimum,	PII	and	classified	information)	on	organization-defined	information	system	
components.	

Rationale:	

PostgreSQL	handling	data	that	requires	"data	at	rest"	protections	must	employ	
cryptographic	mechanisms	to	prevent	unauthorized	disclosure	and	modification	of	the	
information	at	rest.	These	cryptographic	mechanisms	may	be	native	to	PostgreSQL	or	
implemented	via	additional	software	or	operating	system/file	system	settings,	as	
appropriate	to	the	situation.	Information	at	rest	refers	to	the	state	of	information	when	it	is	
located	on	a	secondary	storage	device	(e.g.	disk	drive,	tape	drive)	within	an	organizational	
information	system.	

Selection	of	a	cryptographic	mechanism	is	based	on	the	need	to	protect	the	integrity	of	
organizational	information.	The	strength	of	the	mechanism	is	commensurate	with	the	
security	category	and/or	classification	of	the	information.	Organizations	have	the	flexibility	
to	either	encrypt	all	information	on	storage	devices	(i.e.	full	disk	encryption)	or	encrypt	
specific	data	structures	(e.g.	files,	records,	or	fields).	Organizations	may	also	optionally	
choose	to	implement	both	to	implement	layered	security.	

The	decision	whether,	and	what,	to	encrypt	rests	with	the	data	owner	and	is	also	
influenced	by	the	physical	measures	taken	to	secure	the	equipment	and	media	on	which	
the	information	resides.	Organizations	may	choose	to	employ	different	mechanisms	to	
achieve	confidentiality	and	integrity	protections,	as	appropriate.	If	the	confidentiality	and	
integrity	of	application	data	is	not	protected,	the	data	will	be	open	to	compromise	and	
unauthorized	modification.	

	

139	|	P a g e 	
	

The	PostgreSQL	pgcrypto	extension	provides	cryptographic	functions	for	PostgreSQL	and	
is	intended	to	address	the	confidentiality	and	integrity	of	user	and	system	information	at	
rest	in	non-mobile	devices.	

Impact:	

When	considering	or	undertaking	any	form	of	encryption,	it	is	critical	to	understand	the	
state	of	the	encrypted	data	at	all	stages	of	the	data	lifecycle.	The	use	of	pgcrypto	ensures	
that	the	data	at	rest	in	the	tables	(and	therefore	on	disk)	is	encrypted,	but	for	the	data	to	be	
accessed	by	any	users	or	applications,	said	users/applications	will,	by	necessity,	have	
access	to	the	encrypt	and	decrypt	keys	and	the	data	in	question	will	be	
encrypted/decrypted	in	memory	and	then	transferred	to/from	the	user/application	in	that	
form.	

Audit:	

One	possible	way	to	encrypt	data	within	PostgreSQL	is	to	use	the	pgcrypto	extension.	
To	check	if	pgcrypto	is	installed	on	PostgreSQL,	as	a	database	administrator	run	the	
following	commands:	

postgres=# SELECT * FROM pg_available_extensions WHERE name='pgcrypto';

name | default_version | installed_version | comment
----------+-----------------+-------------------+-------------------------
pgcrypto | 1.3 | | cryptographic functions
(1 row)

If	data	in	the	database	requires	encryption	and	pgcrypto	is	not	available,	this	is	a	fail.	

If	disk	or	filesystem	requires	encryption,	ask	the	system	owner,	DBA,	and	SA	to	
demonstrate	the	use	of	disk-level	encryption.	If	this	is	required	and	is	not	found,	this	is	a	
fail.	If	controls	do	not	exist	or	are	not	enabled,	this	is	also	a	fail.

Remediation:	

The	pgcrypto	extension	is	included	with	the	PostgreSQL	'contrib'	package.	Although	
included,	it	needs	to	be	created	in	the	database.	
As	the	database	administrator,	run	the	following:	

postgres=# CREATE EXTENSION pgcrypto;
CREATE EXTENSION

Verify	pgcrypto	is	installed:

postgres=# SELECT * FROM pg_available_extensions WHERE name='pgcrypto';
 name | default_version | installed_version | comment

	

140	|	P a g e 	
	

----------+-----------------+-------------------+-------------------------
 pgcrypto | 1.3 | 1.3 | cryptographic functions
(1 row)

References:

1. http://www.postgresql.org/docs/current/static/pgcrypto.html	

CIS	Controls:	

Version	6	

	 14.5	Encrypt	At	Rest	Sensitive	Information	
	 Sensitive	information	stored	on	systems	shall	be	encrypted	at	rest	and	require	a	
secondary	authentication	mechanism,	not	integrated	into	the	operating	system,	in	order	to	
access	the	information.	

Version	7	

	 14.8	Encrypt	Sensitive	Information	at	Rest	
	 Encrypt	all	sensitive	information	at	rest	using	a	tool	that	requires	a	secondary	
authentication	mechanism	not	integrated	into	the	operating	system,	in	order	to	access	the	
information.	

	

141	|	P a g e 	
	

7 Replication

Data	redundancy	often	plays	a	major	role	as	part	of	an	overall	database	strategy.	
Replication	is	an	example	of	data	redundancy	and	fulfills	both	High	Availability	and	High	
Performance	requirements.	However,	although	the	DBA	may	have	expended	much	time	
and	effort	securing	the	PRIMARY	host	and	taken	the	time	to	harden	STANDBY	
configuration	parameters,	one	sometimes	overlooks	the	medium	transmitting	the	data	
itself	over	the	network.	Consequently,	replication	is	an	appealing	attack	vector	given	that	
all	DDL,	and	DML	operations	executed	on	the	PRIMARY,	or	master,	host	is	sent	over	the	
wire	to	the	SECONDARY/STANDBY,	or	slave,	hosts.	Fortunately,	when	correctly	
understood,	defeating	such	attacks	can	be	implemented	in	a	straight	forward	manner.	This	
benchmark	reviews	those	issues	surrounding	the	most	common	mechanisms	of	replicating	
data	between	hosts.	There	are	several	PostgreSQL	replication	mechanisms	and	includes:	

• Warm	Standby	(also	known	as	LOG	Shipping)		
o Transaction	logs	are	copied	from	the	PRIMARY	to	SECONDARY	host	that	

reads	the	logs	in	a	"recovery"	mode.	For	all	intents	and	purposes	the	host	
ingesting	the	WAL	cannot	be	read	i.e.	it's	off-line.	

• Hot	Standby		
o Operates	in	the	exact	same	fashion	as	the	Warm	Standby	Server	except	that,	

in	addition,	it	offers	a	read-only	environment	for	client	connections	to	
connect	and	query.	

• Point	In	Time	Recovery	(PITR)		
o Primarily	used	for	database	forensics	and	recovery	at	particular	points	in	

time	such	as	in	the	case	that	important	data	may	have	been	accidentally	
removed.	One	can	restore	the	cluster	to	a	point	in	time	before	the	event	
occurred.	

• Streaming	Replication		
o Uses	an	explicit	connection,	which	in	a	manner	of	speaking	is	similar	to	the	

standard	client	connection,	between	the	PRIMARY	and	STANDBY	host.	It	too	
reads	the	transaction	logs	and	ingests	into	a	read-only	server.	What's	
different	is	that	the	connection	uses	a	special	replication	protocol	which	is	
faster	and	more	efficient	than	log	shipping.	Similar	to	standard	client	
connections,	it	also	honors	the	same	authentication	rules	as	expressed	in	the	
PostgreSQL	host-based	authentication	file,	pg_hba.conf.	

7.1 Ensure a replication-only user is created and used for streaming
replication (Manual)

Profile	Applicability:	

•		Level	1	-	PostgreSQL	

	

142	|	P a g e 	
	

•		Level	1	-	PostgreSQL	on	Linux	

Description:	

Create	a	new	user	specifically	for	use	by	streaming	replication	instead	of	using	the	
superuser	account.	

Rationale:	

As	it	is	not	necessary	to	be	a	superuser	to	initiate	a	replication	connection,	it	is	proper	to	
create	an	account	specifically	for	replication.	This	allows	further	'locking	down'	the	uses	of	
the	superuser	account	and	follows	the	general	principle	of	using	the	least	privileges	
necessary.	

Audit:	

Check	which	users	currently	have	the	replication	permission:	

postgres=# select rolname from pg_roles where rolreplication is true;
 rolname

 postgres
(1 row)

In	a	default	PostgreSQL	cluster,	only	the	postgres	user	will	have	this	permission.

Remediation:	

It	will	be	necessary	to	create	a	new	role	for	replication	purposes:	

postgres=# create user replication_user REPLICATION encrypted password 'XXX';
CREATE ROLE
postgres=# select rolname from pg_roles where rolreplication is true;
 rolname

 postgres
 replication_user
(2 rows)

When	using	pg_basebackup	(or	other	replication	tools)	on	your	standby	server,	you	would	
use	the	replication_user	(and	its	password).	

Ensure	you	allow	the	new	user	via	your	pg_hba.conf	file:

note that 'replication' in the 2nd column is required and is a special
keyword, not a real database
hostssl replication replication_user 0.0.0.0/0 scram-
sha-256

	

143	|	P a g e 	
	

References:

1. https://www.postgresql.org/docs/current/static/app-pgbasebackup.html	
2. https://www.postgresql.org/docs/current/high-availability.html	

CIS	Controls:	

Version	6	

	 5.1	Minimize	And	Sparingly	Use	Administrative	Privileges	
	 Minimize	administrative	privileges	and	only	use	administrative	accounts	when	they	are	
required.	Implement	focused	auditing	on	the	use	of	administrative	privileged	functions	and	
monitor	for	anomalous	behavior.	

Version	7	

	 4.3	Ensure	the	Use	of	Dedicated	Administrative	Accounts	
	 Ensure	that	all	users	with	administrative	account	access	use	a	dedicated	or	secondary	
account	for	elevated	activities.	This	account	should	only	be	used	for	administrative	
activities	and	not	internet	browsing,	email,	or	similar	activities.	

	

144	|	P a g e 	
	

7.2 Ensure base backups are configured and functional (Manual)

Profile	Applicability:	

•		Level	1	-	PostgreSQL	

•		Level	1	-	PostgreSQL	on	Linux	

Description:	

A	'base	backup'	is	a	copy	of	the	PRIMARY	host's	data	cluster	($PGDATA)	and	is	used	to	
create	STANDBY	hosts	and	for	Point	In	Time	Recovery	(PITR)	mechanisms.	Base	backups	
should	be	copied	across	networks	in	a	secure	manner	using	an	encrypted	transport	
mechanism.	The	PostgreSQL	CLI	pg_basebackup	can	be	used,	however,	SSL	encryption	
should	be	enabled	on	the	server	as	per	section	6.8	of	this	benchmark.	The	pgBackRest	tool	
detailed	in	section	8.3	of	this	benchmark	can	also	be	used	to	create	a	'base	backup'.	

Rationale:	

Audit:	

Remediation:	

Executing	base	backups	using	pg_basebackup	requires	the	following	steps	on	the	standby	
server:	

$ whoami
postgres
$ pg_basebackup -h name_or_IP_of_master \
-p 5432 \
-U replication_user \
-D ~postgres/13/data \
-P -v -R -Xs

References:

1. https://www.postgresql.org/docs/current/static/functions-
admin.html#FUNCTIONS-ADMIN-BACKUP-TABLE	

2. https://www.postgresql.org/docs/current/static/app-pgbasebackup.html	 	

	

145	|	P a g e 	
	

CIS	Controls:	

Version	6	

	 10.2	Test	Backups	Regularly	
	 Test	data	on	backup	media	on	a	regular	basis	by	performing	a	data	restoration	process	to	
ensure	that	the	backup	is	properly	working.	

Version	7	

	 10.3	Test	Data	on	Backup	Media	
	 Test	data	integrity	on	backup	media	on	a	regular	basis	by	performing	a	data	restoration	
process	to	ensure	that	the	backup	is	properly	working.	

	

146	|	P a g e 	
	

7.3 Ensure WAL archiving is configured and functional (Automated)

Profile	Applicability:	

•		Level	1	-	PostgreSQL	on	Linux	

Description:	

Write	Ahead	Log	(WAL)	Archiving,	or	Log	Shipping,	is	the	process	of	sending	transaction	
log	files	from	the	PRIMARY	host	either	to	one	or	more	STANDBY	hosts	or	to	be	archived	on	
a	remote	storage	device	for	later	use,	e.g.	PITR.	There	are	several	utilities	that	can	copy	
WALs	including,	but	not	limited	to,	cp,	scp,	sftp,	and	rynsc.	Basically,	the	server	follows	a	
set	of	runtime	parameters	which	defines	when	the	WAL	should	be	copied	using	one	of	the	
aforementioned	utilities.	

Rationale:	

Unless	the	server	has	been	correctly	configured,	one	runs	the	risk	of	sending	WALs	in	an	
unsecured,	unencrypted	fashion.	

Audit:	

Review	the	following	runtime	parameters	in	postgresql.conf.	The	following	example	
demonstrates	rsync	but	requires	that	SSH	as	a	transport	medium	be	enabled	on	the	source	
host:	

archive_mode = on
archive_command = 'rsync -e ssh -a %p
postgres@remotehost:/var/lib/pgsql/WAL/%f'

Confirm	SSH	public/private	keys	have	been	generated	on	both	the	source	and	target	hosts	
in	their	respective	superuser	home	accounts.

Remediation:	

Change	parameters	and	restart	the	server	as	required.	

Note:	SSH	public	keys	must	be	generated	and	installed	as	per	industry	standards.	

References:	

1. https://www.postgresql.org/docs/current/static/runtime-config-
wal.html#RUNTIME-CONFIG-WAL-ARCHIVING	

2. https://linux.die.net/man/1/ssh-keygen	
3. https://linux.die.net/man/1/rsync	

	

147	|	P a g e 	
	

CIS	Controls:	

Version	6	

	 14.2	Encrypt	All	Sensitive	Information	Over	Less-trusted	Networks	
	 All	communication	of	sensitive	information	over	less-trusted	networks	should	be	
encrypted.	Whenever	information	flows	over	a	network	with	a	lower	trust	level,	the	
information	should	be	encrypted.	

Version	7	

	 14.4	Encrypt	All	Sensitive	Information	in	Transit	
	 Encrypt	all	sensitive	information	in	transit.	

	

148	|	P a g e 	
	

7.4 Ensure streaming replication parameters are configured correctly
(Manual)

Profile	Applicability:	

•		Level	1	-	PostgreSQL	

•		Level	1	-	PostgreSQL	on	Linux	

Description:	

Streaming	replication	from	a	PRIMARY	host	transmits	DDL,	DML,	passwords,	and	other	
potentially	sensitive	activities	and	data.	These	connections	should	be	protected	with	Secure	
Sockets	Layer	(SSL).	

Rationale:	

Unencrypted	transmissions	could	reveal	sensitive	information	to	unauthorized	parties.	
Unauthenticated	connections	could	enable	man-in-the-middle	attacks.	

Audit:	

Confirm	a	dedicated	and	non-superuser	role	with	replication	permission	exists:	

postgres=> select rolname from pg_roles where rolreplication is true;
 rolname

 postgres
 replication_user
(2 rows)

On	the	target/STANDBY	host,	execute	a	psql	invocation	similar	to	the	following,	confirming	
that	SSL	communications	are	possible:

$ whoami
postgres
$ psql 'host=mySrcHost dbname=postgres user=replication_user
password=mypassword sslmode=require' -c 'select 1;'

Remediation:

Review	prior	sections	in	this	benchmark	regarding	SSL	certificates,	replication	user,	and	
WAL	archiving.	

Confirm	the	file	$PGDATA/standby.signal	is	present	on	the	STANDBY	host	and	
$PGDATA/postgresql.auto.conf	contains	lines	similar	to	the	following:	

	

149	|	P a g e 	
	

primary_conninfo = 'user=replication_user password=mypassword host=mySrcHost
port=5432 sslmode=require sslcompression=1'

References:

1. https://www.postgresql.org/docs/current/static/runtime-config-
connection.html#RUNTIME-CONFIG-CONNECTION-SECURITY	

2. https://www.postgresql.org/docs/current/static/functions-
admin.html#FUNCTIONS-ADMIN-BACKUP-TABLE	

3. https://www.postgresql.org/docs/current/static/app-pgbasebackup.html	
4. https://www.postgresql.org/docs/current/static/runtime-config-

wal.html#RUNTIME-CONFIG-WAL-ARCHIVING	
5. https://linux.die.net/man/1/openssl	

CIS	Controls:	

Version	6	

	 14.2	Encrypt	All	Sensitive	Information	Over	Less-trusted	Networks	
	 All	communication	of	sensitive	information	over	less-trusted	networks	should	be	
encrypted.	Whenever	information	flows	over	a	network	with	a	lower	trust	level,	the	
information	should	be	encrypted.	

Version	7	

	 14.4	Encrypt	All	Sensitive	Information	in	Transit	
	 Encrypt	all	sensitive	information	in	transit.	

	

150	|	P a g e 	
	

8 Special Configuration Considerations

The	recommendations	proposed	here	are	to	try	and	address	some	of	the	less	come	use	
cases	which	may	warrant	additional	configuration	guidance/consideration.	

8.1 Ensure PostgreSQL configuration files are outside the data cluster
(Manual)

Profile	Applicability:	

•		Level	1	-	PostgreSQL	

•		Level	1	-	PostgreSQL	on	Linux	

Description:	

PostgreSQL	configuration	files	within	the	data	cluster's	directory	tree	can	be	changed	by	
anyone	logging	into	the	data	cluster	as	the	superuser,	i.e.	postgres.	As	a	matter	of	default	
policy,	configuration	files	such	as	postgresql.conf,	pg_hba.conf,	and	pg_ident,	are	placed	
in	the	data	cluster's	directory,	$PGDATA.	PostgreSQL	can	be	configured	to	relocate	these	files	
to	locations	outside	the	data	cluster	which	cannot	then	be	accessed	by	an	ordinary	
superuser	login	session.	

Consideration	should	also	be	given	to	"include	directives";	these	are	cluster	subdirectories	
where	one	can	locate	files	containing	additional	configuration	parameters.	Include	
directives	are	meant	to	add	more	flexibility	for	unique	installs	or	large	network	
environments	while	maintaining	order	and	consistent	architectural	design.	

Rationale:	

Leaving	PostgreSQL	configuration	files	within	the	data	cluster's	directory	tree	increases	the	
changes	that	they	will	be	inadvertently	or	intentionally	altered.	

Audit:	

Execute	the	following	commands	to	verify	the	configuration	is	correct:	

postgres=# select name, setting from pg_settings where name ~ '.*_file$';
 name | setting
----------------------+--
 config_file | /var/lib/pgsql/13/data/postgresql.conf
 external_pid_file |
 hba_file | /var/lib/pgsql/13/data/pg_hba.conf
 ident_file | /var/lib/pgsql/13/data/pg_ident.conf
 promote_trigger_file |

	

151	|	P a g e 	
	

 ssl_ca_file |
 ssl_cert_file | server.crt
 ssl_crl_file |
 ssl_dh_params_file |
 ssl_key_file | server.key
(10 rows)

Execute	the	following	command	to	see	any	active	include	settings:

$ grep ^include $PGDATA/postgresql.{auto.,}conf

Inspect	the	file	directories	and	permissions	for	all	returned	values.	Only	superusers	and	
authorized	users	should	have	access	control	rights	for	these	files.	If	permissions	are	not	
highly	restricted,	this	is	a	fail.

Remediation:	

Follow	these	steps	to	remediate	the	configuration	file	locations	and	permissions:	

• Determine	appropriate	locations	for	relocatable	configuration	files	based	on	your	
organization's	security	policies.	If	necessary,	relocate	and/or	rename	configuration	
files	outside	of	the	data	cluster.	

• Ensure	their	file	permissions	are	restricted	as	much	as	possible,	i.e.	only	superuser	
read	access.	

• Change	the	settings	accordingly	in	the	postgresql.conf	configuration	file.	
• Restart	the	database	cluster	for	the	changes	to	take	effect.	

Default	Value:	

The	defaults	for	PostgreSQL	configuration	files	are	listed	below.	

 name | setting
----------------------+--
 config_file | /var/lib/pgsql/13/data/postgresql.conf
 external_pid_file |
 hba_file | /var/lib/pgsql/13/data/pg_hba.conf
 ident_file | /var/lib/pgsql/13/data/pg_ident.conf
 promote_trigger_file |
 ssl_ca_file |
 ssl_cert_file | server.crt
 ssl_crl_file |
 ssl_dh_params_file |
 ssl_key_file | server.key
(10 rows)

References:	

1. https://www.postgresql.org/docs/current/static/runtime-config-file-
locations.html	

	

152	|	P a g e 	
	

2. https://www.postgresql.org/docs/current/static/runtime-config-connection.html	
3. https://www.postgresql.org/docs/current/static/config-setting.html#CONFIG-

INCLUDES	

CIS	Controls:	

Version	6	

	 18.7	Use	Standard	Database	Hardening	Templates	
	 For	applications	that	rely	on	a	database,	use	standard	hardening	configuration	templates.	
All	systems	that	are	part	of	critical	business	processes	should	also	be	tested.	

Version	7	

	 18.11	Use	Standard	Hardening	Configuration	Templates	for	Databases	
	 For	applications	that	rely	on	a	database,	use	standard	hardening	configuration	templates.	
All	systems	that	are	part	of	critical	business	processes	should	also	be	tested.	

	

153	|	P a g e 	
	

8.2 Ensure PostgreSQL subdirectory locations are outside the data
cluster (Manual)

Profile	Applicability:	

•		Level	1	-	PostgreSQL	

•		Level	1	-	PostgreSQL	on	Linux	

Description:	

The	PostgreSQL	cluster	is	organized	to	carry	out	specific	tasks	in	subdirectories.	For	the	
purposes	of	performance,	reliability,	and	security	these	subdirectories	should	be	relocated	
outside	the	data	cluster.	

Rationale:	

Some	subdirectories	contain	information,	such	as	logs,	which	can	be	of	value	to	others	such	
as	developers.	Other	subdirectories	can	gain	a	performance	benefit	when	placed	on	fast	
storage	devices.	Finally,	relocating	a	subdirectory	to	a	separate	and	distinct	partition	
mitigates	denial	of	service	and	involuntary	server	shutdown	when	excessive	writes	fill	the	
data	cluster's	partition,	e.g.	pg_xlog	and	pg_log.	

Audit:	

Execute	the	following	SQL	statement	to	verify	the	configuration	is	correct.	Alternatively,	
inspect	the	parameter	settings	in	the	postgresql.conf	configuration	file.	

postgres=# select name, setting from pg_settings where (name ~ '_directory$'
or name ~ '_tablespace');
 name | setting
----------------------+-------------------------
 data_directory | /var/lib/pgsql/13/data
 default_tablespace |
 log_directory | log
 stats_temp_directory | pg_stat_tmp
 temp_tablespaces |
(5 rows)

Inspect	the	file	and	directory	permissions	for	all	returned	values.	Only	superusers	and	
authorized	users	should	have	access	control	rights	for	these	files	and	directories.	If	
permissions	are	not	highly	restrictive,	this	is	a	fail.

Remediation:	

Perform	the	following	steps	to	remediate	the	subdirectory	locations	and	permissions:	

	

154	|	P a g e 	
	

• Determine	appropriate	data,	log,	and	tablespace	directories	and	locations	based	on	
your	organization's	security	policies.	If	necessary,	relocate	all	listed	directories	
outside	the	data	cluster.	

• Ensure	file	permissions	are	restricted	as	much	as	possible,	i.e.	only	superuser	read	
access.	

• When	directories	are	relocated	to	other	partitions,	ensure	that	they	are	of	sufficient	
size	to	mitigate	against	excessive	space	utilization.	

• Lastly,	change	the	settings	accordingly	in	the	postgresql.conf	configuration	file	
and	restart	the	database	cluster	for	changes	to	take	effect.	

Default	Value:	

The	default	for	data_directory	is	ConfigDir	and	the	default	for	log_directory	is	log	
(based	on	absolute	path	of	data_directory).	The	defaults	for	tablespace	settings	are	null,	
or	not	set,	upon	cluster	creation.	

References:	

1. https://www.postgresql.org/docs/current/static/runtime-config-file-
locations.html	

CIS	Controls:	

Version	6	

	 18.7	Use	Standard	Database	Hardening	Templates	
	 For	applications	that	rely	on	a	database,	use	standard	hardening	configuration	templates.	
All	systems	that	are	part	of	critical	business	processes	should	also	be	tested.	

Version	7	

	 18.11	Use	Standard	Hardening	Configuration	Templates	for	Databases	
	 For	applications	that	rely	on	a	database,	use	standard	hardening	configuration	templates.	
All	systems	that	are	part	of	critical	business	processes	should	also	be	tested.	

	

155	|	P a g e 	
	

8.3 Ensure the backup and restore tool, 'pgBackRest', is installed and
configured (Automated)

Profile	Applicability:	

•		Level	1	-	PostgreSQL	on	Linux	

Description:	

pgBackRest	aims	to	be	a	simple,	reliable	backup	and	restore	system	that	can	seamlessly	
scale	up	to	the	largest	databases	and	workloads.	Instead	of	relying	on	traditional	backup	
tools	like	tar	and	rsync,	pgBackRest	implements	all	backup	features	internally	and	uses	a	
custom	protocol	for	communicating	with	remote	systems.	Removing	reliance	on	tar	and	
rsync	allows	for	better	solutions	to	database-specific	backup	challenges.	The	custom	
remote	protocol	allows	for	more	flexibility	and	limits	the	types	of	connections	that	are	
required	to	perform	a	backup	which	increases	security.	

Rationale:	

The	native	PostgreSQL	backup	facility	pg_dump	provides	adequate	logical	backup	
operations	but	does	not	provide	for	Point	In	Time	Recovery	(PITR).	The	PostgreSQL	facility	
pg_basebackup	performs	physical	backup	of	the	database	files	and	does	provide	for	PITR,	
but	it	is	constrained	by	single	threading.	Both	of	these	methodologies	are	standard	in	the	
PostgreSQL	ecosystem	and	appropriate	for	particular	backup/recovery	needs.	pgBackRest	
offers	another	option	with	much	more	robust	features	and	flexibility.	

pgBackRest	is	open-source	software	developed	to	perform	efficient	backups	on	PostgreSQL	
databases	that	measure	in	tens	of	terabytes	and	greater.	It	supports	per	file	checksums,	
compression,	partial/failed	backup	resume,	high-performance	parallel	transfer,	
asynchronous	archiving,	tablespaces,	expiration,	full/differential/incremental,	
local/remote	operation	via	SSH,	hard-linking,	restore,	backup	encryption,	and	more.	
pgBackRest	is	written	in	C	and	Perl	and	does	not	depend	on	rsync	or	tar	but	instead	
performs	its	own	deltas	which	gives	it	maximum	flexibility.	Finally,	pgBackRest	provides	an	
easy-to-use	internal	repository	listing	backup	details	accessible	via	the	pgbackrest info	
command,	as	illustrated	below.	

$ pgbackrest info
stanza: proddb01
status: ok

db (current)
 wal archive min/max (12.0-1): 000000010000000000000012 /
000000010000000000000017

	

156	|	P a g e 	
	

 full backup: 20190603-153106F
 timestamp start/stop: 2019-06-03 15:31:06 / 2019-06-03 15:31:49
 wal start/stop: 000000010000000000000012 / 000000010000000000000012
 database size: 29.4MB, backup size: 29.4MB
 repository size: 3.4MB, repository backup size: 3.4MB

 diff backup: 20190603-153106F_20181002-173109D
 timestamp start/stop: 2019-06-03 17:31:09 / 2019-06-03 17:31:19
 wal start/stop: 000000010000000000000015 / 000000010000000000000015
 database size: 29.4MB, backup size: 2.6MB
 repository size: 3.4MB, repository backup size: 346.8KB
 backup reference list: 20190603-153106F

 incr backup: 20190603-153106F_20181002-183114I
 timestamp start/stop: 2019-06-03 18:31:14 / 2019-06-03 18:31:22
 wal start/stop: 000000010000000000000017 / 000000010000000000000017
 database size: 29.4MB, backup size: 8.2KB
 repository size: 3.4MB, repository backup size: 519B
 backup reference list: 20190603-153106F, 20190603-153106F_20190603-
173109D

Audit:	

If	installed,	invoke	it	without	arguments	to	see	the	help:	

not installed
$ pgbackrest
-bash: pgbackrest: command not found
installed
$ pgbackrest
pgBackRest 2.31 - General help

Usage:
 pgbackrest [options] [command]

Commands:
 archive-get Get a WAL segment from the archive.
 archive-push Push a WAL segment to the archive.
 backup Backup a database cluster.
 check Check the configuration.
 expire Expire backups that exceed retention.
 help Get help.
 info Retrieve information about backups.
 restore Restore a database cluster.
 stanza-create Create the required stanza data.
 stanza-delete Delete a stanza.
 stanza-upgrade Upgrade a stanza.
 start Allow pgBackRest processes to run.
 stop Stop pgBackRest processes from running.
 version Get version.

Use 'pgbackrest help [command]' for more information.

If	pgBackRest	is	not	installed,	this	is	a	fail.

	

157	|	P a g e 	
	

Remediation:	

pgBackRest	is	not	installed	nor	configured	for	PostgreSQL	by	default,	but	instead	is	
maintained	as	a	GitHub	project.	Fortunately,	it	is	a	part	of	the	PGDG	repository	and	can	be	
easily	installed:	

$ whoami
root
$ dnf -y install pgbackrest
[snip]
Installed:
 pgbackrest-2.31-1.rhel8.x86_64

Complete!

Once	installed,	pgBackRest	must	be	configured	for	things	like	stanza	name,	backup	
location,	retention	policy,	logging,	etc.	Please	consult	the	configuration	guide.	
If	employing	pgBackRest	for	your	backup/recovery	solution,	ensure	the	repository,	base	
backups,	and	WAL	archives	are	stored	on	a	reliable	file	system	separate	from	the	database	
server.	Further,	the	external	storage	system	where	backups	resided	should	have	limited	
access	to	only	those	system	administrators	as	necessary.	Finally,	as	with	any	
backup/recovery	solution,	stringent	testing	must	be	conducted.	A	backup	is	only	good	if	
it	can	be	restored	successfully.

References:	

1. https://pgbackrest.org/	
2. https://github.com/pgbackrest/pgbackrest	
3. https://www.postgresql.org/docs/current/static/app-pgdump.html	
4. https://www.postgresql.org/docs/current/static/app-pgbasebackup.html	

CIS	Controls:	

Version	6	

	 10	Data	Recovery	Capability	
	 Data	Recovery	Capability	

Version	7	

	 10.1	Ensure	Regular	Automated	Back	Ups	
	 Ensure	that	all	system	data	is	automatically	backed	up	on	regular	basis.	

	 10.2	Perform	Complete	System	Backups	
	 Ensure	that	each	of	the	organization's	key	systems	are	backed	up	as	a	complete	system,	
through	processes	such	as	imaging,	to	enable	the	quick	recovery	of	an	entire	system.	

	

158	|	P a g e 	
	

8.4 Ensure miscellaneous configuration settings are correct (Manual)

Profile	Applicability:	

•		Level	1	-	PostgreSQL	

•		Level	1	-	PostgreSQL	on	Linux	

Description:	

This	recommendation	covers	non-regular,	special	files,	and	dynamic	libraries.	

PostgreSQL	permits	local	logins	via	the	UNIX	DOMAIN	SOCKET	and,	for	the	most	part,	
anyone	with	a	legitimate	Unix	login	account	can	make	the	attempt.	Limiting	PostgreSQL	
login	attempts	can	be	made	by	relocating	the	UNIX	DOMAIN	SOCKET	to	a	subdirectory	with	
restricted	permissions.	

The	creation	and	implementation	of	user-defined	dynamic	libraries	is	an	extraordinary	
powerful	capability.	In	the	hands	of	an	experienced	DBA/programmer,	it	can	significantly	
enhance	the	power	and	flexibility	of	the	RDBMS.	But	new	and	unexpected	behavior	can	also	
be	assigned	to	the	RDBMS,	resulting	in	a	very	dangerous	environment	in	what	should	
otherwise	be	trusted.	

Rationale:	

Audit:	

Execute	the	following	SQL	statement	to	verify	the	configuration	is	correct.	Alternatively,	
inspect	the	parameter	settings	in	the	postgresql.conf	configuration	file.	

postgres=# select name, setting from pg_settings where name in
('external_pid_file',
'unix_socket_directories','shared_preload_libraries','dynamic_library_path','
local_preload_libraries','session_preload_libraries');
 name | setting
---------------------------+---------------------------
 dynamic_library_path | $libdir
 external_pid_file |
 local_preload_libraries |
 session_preload_libraries |
 shared_preload_libraries | pgaudit, set_user
 unix_socket_directories | /var/run/postgresql, /tmp
(6 rows)

Inspect	the	file	and	directory	permissions	for	all	returned	values.	Only	superusers	should	
have	access	control	rights	for	these	files	and	directories.	If	permissions	are	not	highly	
restricted,	this	is	a	fail.

	

159	|	P a g e 	
	

Remediation:	

Follow	these	steps	to	remediate	the	configuration:	

• Determine	permissions	based	on	your	organization's	security	policies.	
• Relocate	all	files	and	ensure	their	permissions	are	restricted	as	much	as	possible,	i.e.	

only	superuser	read	access.	
• Ensure	all	directories	where	these	files	are	located	have	restricted	permissions	such	

that	the	superuser	can	read	but	not	write.	
• Lastly,	change	the	settings	accordingly	in	the	postgresql.conf	configuration	file	

and	restart	the	database	cluster	for	changes	to	take	effect.	

Default	Value:	

The	dynamic_library_path	default	is	$libdir	and	unix_socket_directories	default	is	
/var/run/postgresql, /tmp.	The	default	for	external_pid_file	and	all	library	
parameters	are	initially	null,	or	not	set,	upon	cluster	creation.	

References:	

1. https://www.postgresql.org/docs/current/static/runtime-config-file-
locations.html	

2. https://www.postgresql.org/docs/current/static/runtime-config-connection.html	
3. https://www.postgresql.org/docs/current/static/runtime-config-client.html	

CIS	Controls:	

Version	6	

	 18.7	Use	Standard	Database	Hardening	Templates	
	 For	applications	that	rely	on	a	database,	use	standard	hardening	configuration	templates.	
All	systems	that	are	part	of	critical	business	processes	should	also	be	tested.	

Version	7	

	 18.11	Use	Standard	Hardening	Configuration	Templates	for	Databases	
	 For	applications	that	rely	on	a	database,	use	standard	hardening	configuration	templates.	
All	systems	that	are	part	of	critical	business	processes	should	also	be	tested.	

		

	

160	|	P a g e 	
	

Appendix:	Summary	Table	
Control	 Set	

Correctly	
Yes	 No	

1	 Installation	and	Patches	
1.1	 Ensure	packages	are	obtained	from	authorized	repositories	

(Manual)	 o	 o	

1.2	 Ensure	systemd	Service	Files	Are	Enabled	(Automated)	 o	 o	
1.3	 Ensure	Data	Cluster	Initialized	Successfully	(Automated)	 o	 o	
2	 Directory	and	File	Permissions	
2.1	 Ensure	the	file	permissions	mask	is	correct	(Manual)	 o	 o	
2.2	 Ensure	the	PostgreSQL	pg_wheel	group	membership	is	

correct	(Manual)	 o	 o	

3	 Logging	Monitoring	And	Auditing	
3.1	 PostgreSQL	Logging	
3.1.1	 Logging	Rationale	
3.1.2	 Ensure	the	log	destinations	are	set	correctly	(Automated)	 o	 o	
3.1.3	 Ensure	the	logging	collector	is	enabled	(Automated)	 o	 o	
3.1.4	 Ensure	the	log	file	destination	directory	is	set	correctly	

(Automated)	 o	 o	

3.1.5	 Ensure	the	filename	pattern	for	log	files	is	set	correctly	
(Automated)	 o	 o	

3.1.6	 Ensure	the	log	file	permissions	are	set	correctly	
(Automated)	 o	 o	

3.1.7	 Ensure	'log_truncate_on_rotation'	is	enabled	(Automated)	 o	 o	
3.1.8	 Ensure	the	maximum	log	file	lifetime	is	set	correctly	

(Automated)	 o	 o	

3.1.9	 Ensure	the	maximum	log	file	size	is	set	correctly	
(Automated)	 o	 o	

3.1.10	 Ensure	the	correct	syslog	facility	is	selected	(Automated)	 o	 o	
3.1.11	 Ensure	the	program	name	for	PostgreSQL	syslog	messages	

is	correct	(Automated)	 o	 o	

3.1.12	 Ensure	the	correct	messages	are	written	to	the	server	log	
(Automated)	 o	 o	

3.1.13	 Ensure	the	correct	SQL	statements	generating	errors	are	
recorded	(Automated)	 o	 o	

3.1.14	 Ensure	'debug_print_parse'	is	disabled	(Automated)	 o	 o	
3.1.15	 Ensure	'debug_print_rewritten'	is	disabled	(Automated)	 o	 o	
3.1.16	 Ensure	'debug_print_plan'	is	disabled	(Automated)	 o	 o	
3.1.17	 Ensure	'debug_pretty_print'	is	enabled	(Automated)	 o	 o	
3.1.18	 Ensure	'log_connections'	is	enabled	(Automated)	 o	 o	

	

161	|	P a g e 	
	

3.1.19	 Ensure	'log_disconnections'	is	enabled	(Automated)	 o	 o	
3.1.20	 Ensure	'log_error_verbosity'	is	set	correctly	(Automated)	 o	 o	
3.1.21	 Ensure	'log_hostname'	is	set	correctly	(Automated)	 o	 o	
3.1.22	 Ensure	'log_line_prefix'	is	set	correctly	(Automated)	 o	 o	
3.1.23	 Ensure	'log_statement'	is	set	correctly	(Automated)	 o	 o	
3.1.24	 Ensure	'log_timezone'	is	set	correctly	(Automated)	 o	 o	
3.2	 Ensure	the	PostgreSQL	Audit	Extension	(pgAudit)	is	enabled	

(Automated)	 o	 o	

4	 User	Access	and	Authorization	
4.1	 Ensure	sudo	is	configured	correctly	(Manual)	 o	 o	
4.2	 Ensure	excessive	administrative	privileges	are	revoked	

(Manual)	 o	 o	

4.3	 Ensure	excessive	function	privileges	are	revoked	
(Automated)	 o	 o	

4.4	 Ensure	excessive	DML	privileges	are	revoked	(Manual)	 o	 o	
4.5	 Use	pg_permission	extension	to	audit	object	permissions	

(Automated)	 o	 o	

4.6	 Ensure	Row	Level	Security	(RLS)	is	configured	correctly	
(Manual)	 o	 o	

4.7	 Ensure	the	set_user	extension	is	installed	(Automated)	 o	 o	
4.8	 Make	use	of	default	roles	(Manual)	 o	 o	
5	 Connection	and	Login	
5.1	 Ensure	login	via	"local"	UNIX	Domain	Socket	is	configured	

correctly	(Manual)	 o	 o	

5.2	 Ensure	login	via	"host"	TCP/IP	Socket	is	configured	
correctly	(Manual)	 o	 o	

6	 PostgreSQL	Settings	
6.1	 Ensure	'Attack	Vectors'	Runtime	Parameters	are	Configured	

(Manual)	 o	 o	

6.2	 Ensure	'backend'	runtime	parameters	are	configured	
correctly	(Automated)	 o	 o	

6.3	 Ensure	'Postmaster'	Runtime	Parameters	are	Configured	
(Manual)	 o	 o	

6.4	 Ensure	'SIGHUP'	Runtime	Parameters	are	Configured	
(Manual)	 o	 o	

6.5	 Ensure	'Superuser'	Runtime	Parameters	are	Configured	
(Manual)	 o	 o	

6.6	 Ensure	'User'	Runtime	Parameters	are	Configured	(Manual)	 o	 o	
6.7	 Ensure	FIPS	140-2	OpenSSL	Cryptography	Is	Used	

(Automated)	 o	 o	

6.8	 Ensure	SSL	is	enabled	and	configured	correctly	(Automated)	 o	 o	
6.9	 Ensure	the	pgcrypto	extension	is	installed	and	configured	

correctly	(Manual)	 o	 o	

	

162	|	P a g e 	
	

7	 Replication	
7.1	 Ensure	a	replication-only	user	is	created	and	used	for	

streaming	replication	(Manual)	 o	 o	

7.2	 Ensure	base	backups	are	configured	and	functional	
(Manual)	 o	 o	

7.3	 Ensure	WAL	archiving	is	configured	and	functional	
(Automated)	 o	 o	

7.4	 Ensure	streaming	replication	parameters	are	configured	
correctly	(Manual)	 o	 o	

8	 Special	Configuration	Considerations	
8.1	 Ensure	PostgreSQL	configuration	files	are	outside	the	data	

cluster	(Manual)	 o	 o	

8.2	 Ensure	PostgreSQL	subdirectory	locations	are	outside	the	
data	cluster	(Manual)	 o	 o	

8.3	 Ensure	the	backup	and	restore	tool,	'pgBackRest',	is	
installed	and	configured	(Automated)	 o	 o	

8.4	 Ensure	miscellaneous	configuration	settings	are	correct	
(Manual)	 o	 o	

	

	 	

	

163	|	P a g e 	
	

		

Appendix:	Change	History	
Date	 Version	 Changes	for	this	version	

Feb	26,	2021	 1.0.0	 Initial	Release	

	

